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It has been recently established that the low-frequency spectrum of simple computer glass models is
populated by soft, quasilocalized nonphononic vibrational modes whose frequencies w follow a gapless,
universal distribution D(w) ~ w*. While this universal nonphononic spectrum has been shown to be robust
to varying the glass history and spatial dimension, it has so far only been observed in simple computer
glasses featuring radially symmetric, pairwise interaction potentials. Consequently, the relevance of the
universality of nonphononic spectra seen in simple computer glasses to realistic laboratory glasses remains
unclear. Here, we demonstrate the emergence of the universal @* nonphononic spectrum in a broad variety
of realistic computer glass models, ranging from tetrahedral network glasses with three-body interactions,
through molecular glasses and glassy polymers, to bulk metallic glasses. Taken together with previous
observations, our results indicate that the low-frequency nonphononic vibrational spectrum of any glassy
solid quenched from a melt features the universal * law, independently of the nature of its microscopic

interactions.
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Introduction.—It is common in condensed matter
physics that dynamic and thermodynamic phenomena
are controlled by low-energy excitations [1,2]. For exam-
ple, in crystalline solids, phonon-phonon interactions con-
trol wave attenuation rates and heat transport [3];
dislocations (i.e., low-energy topological defects) mediate
plastic deformation rates upon external mechanical loading
[4]; the specific heat grows as the third power of temper-
ature due to the ~w’ Debye distribution of phonon
frequencies. The same principle is also seen to hold in
glassy solids, in which soft two-level systems, and their
interactions with phonons, are believed to control thermo-
dynamic and transport properties below 10 K [5-7], and
low-energy, quasilocalized excitations—often referred
to as shear transformation zones [§]—govern elastoplastic
responses [9]. Consequently, the complete understanding
of the statistical mechanics of soft excitations in solids, and
in particular in glasses, is of key importance.

Indeed, much attention has been devoted in the past few
decades to understanding the low-frequency spectra of
glassy solids [10-28]. It is now well accepted that soft,
quasilocalized modes dwell at vanishing frequencies @ — 0
in simple computer glasses. These nonphononic excitations
were shown to universally feature a disordered core of linear
size of about ten particle diameters [25] (see examples in
Fig. 1), decorated with algebraically decaying (mostly
affine) displacement fields of magnitude ~7—(4=1) at distance
r away from the core, in d spatial dimensions. The
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FIG. 1. In this work we study five realistic glass-forming
models, each representing a different class of disordered solids,
as illustrated by the cartoons. Visualizations of quasilocalized
modes found in the employed models of (a) an elastic-spheres
glass, (b) a network glass, (c) a molecular glass, (d) a polymer
glass, and (e) a bulk metallic glass. For visualization purposes,
only the largest 1% of components are shown.

frequencies associated with these excitations were shown
to follow a universal distribution D(w) ~ w* [22], indepen-
dent of spatial dimension [23] or depth of supercooling prior
to glass formation [24,25,27]. While these numerical obser-
vations are supported by various theoretical frameworks

© 2020 American Physical Society
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[10,11], their relevance for laboratory glasses has not been
well established; to the best of our knowledge, all computa-
tional investigations of the asymptotic functional form of
low-frequency nonphononic spectra to date (with the excep-
tion of [29] put forward in parallel to this work) employed
simple computer glass models, in which particles interact via
radially symmetric, pairwise potentials.

In this work we create in silico ensembles of polymeric
glasses, tetrahedral network glasses, elastic-sphere glasses,
molecular glasses, and bulk metallic glasses (BMGs),
which are considerably more realistic representatives of
laboratory glasses compared to the simple computer-glass
models investigated previously, in order to test whether the
universal nonphononic spectrum observed in simple com-
puter glasses remains relevant to laboratory glasses as well.
Our main finding is that these realistic glass-forming
models also feature the universal D(w) ~ @* nonphononic
vibrational density of states (VDOS), as seen in simple
computer glasses. We thus extend the degree of universality
of the ®* law, and lend substantial support to the assertion
that any glass formed by quenching a melt—and, in
particular, laboratory glasses—would feature the gapless
* nonphononic VDOS.

Computer glass models.—We employ five computer
glass models, each representing a different class of glassy
solids. Here, we briefly review the employed models,
keeping a complete description for [30]. Throughout this
work we express frequencies in terms of ¢,/ a, where c; is
the shear wave speed, and a; is the typical interparticle
distance, both are precisely defined in [30].

The employed models are as follows: (1) An elastic-
spheres glass model in which spherical particles interact via
the linear-elastic Hertz contact law [31]. At low confining
pressures, this model undergoes an unjamming transition
[48-50]. We refer to this model as HRZ. (2) The Stillinger-
Weber network glass model [32], which employs a three-
body term in the potential energy that favors tetrahedral
local structures. In some range of its parameters, this model
mimics the behavior of amorphous silicon [51]. We refer to
this model as SW. (3) A triatomic molecular glass model
inspired by glass-forming models of orthoterphenyl
[43,52], referred to in what follows as OTP. (4) A poly-
mer-glass model of soft beads connected by finite exten-
sible nonlinear elastic nonlinear springs [53], referred to in
what follows as PG. Monomers between different polymers
interact with a Lennard-Jones-like potential [33]. (5) A
binary bulk metallic glass (BMG) alloy composed of
Copper (Cu) and Zirconium (Zr) atoms according to
CuyeZrsy [34,35]. The interactions are calculated using
the embedded-atom method (EAM), which gives rise to a
spherically symmetric, many-body potential.

Detailed descriptions about how ensembles of glassy
samples were created for each computer glass model are
provided in [30]. Briefly described, we generate uncorre-
lated equilibrium configurations at temperatures much

larger than T, and perform an energy minimization on
those configurations to obtain zero-temperature glassy
solids.

For each generated glassy sample, we perform a normal
mode analysis, which follows from a generalized eigen-
value problem: eigenvectors y and eigenfrequencies w
satisfy the equation

ZMU Y= mw*y,;. (1)
J

Here, m; denotes the mass of the ith particle, the Hessian
matrix reads M,;; = (8*U/0x;0x ), where U denotes the
potential energy and x; is the d-dimensional coordinate
vector of the ith particle, and y; is the d-dimensional
Cartesian displacement vector of the jth particle. Note that
no summation over i is implied on the right-hand side of
Eq. (1). To obtain the eigenvectors y and eigenfrequencies
, we solve the auxiliary eigenvalue problem

Z M; P = w*¢;, (2)
i,

where w; = ¢,/,/m;. Details about the calculation of M
for the SW and BMG systems are provided at length in
[30]. The system and ensemble sizes in our simulations
were selected such that the lowest-frequency modes appear
below the first phononic band, as explained in detail
in [22,54].

Results.—Our key result is displayed in Figs. 2(a)-2(e),
where we show the low-frequency regime of the VDOS of
all simulated computer glasses. All models feature the
universal form D(w) ~ w*, despite the stark qualitative
differences between the microscopic interaction laws that
define each model.

A quantitative comparison of the localization properties
of quasilocalized modes between our various computer
models is made possible by studying those modes’ par-
ticipation ratio

Q_wi 'lI’i)2
NY i(wi - lI/i)2 ’

where y; denotes the d-dimensional vector of a mode’s
Cartesian components pertaining to the ith particle. The
participation ratio is expected to scale as 1/N for localized
modes [55], and should be of order unity for extended
modes (e.g., phonons). The product Ne is thus expected to
reflect the core size of quasilocalized modes, expressed in
terms of the characteristic volume occupied by a single
particle.

In Figs. 2(f)-2(j) we show the mean participation ratio e
of vibrational modes, scaled by system size N, binned over
and plotted against frequency for all employed computer
glasses. The first phonon band frequency 2zc /L is

(3)

e =
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FIG. 2. Low-frequency vibrational modes’ spectra and localization properties, measured in realistic computer glass models. We show
D(w) vs frequency w for a linear-elastic-spheres glass [HRZ, panel (a)], a network glass [SW, panel (b)], a molecular glass [OTP, panel
(©)], a polymer glass [PG, panel (d)], and a bulk metallic glass [BMG, panel (e)]. The solid lines indicate D(w) ~ @”. Panels ()—(j) show
the average participation ratio e [see definition in Eq. (3)], scaled by the number of particles N, binned over and plotted against
frequency, for the same models of panels (a)—(e), respectively. The vertical dashed lines mark the first phonon band frequency 2zc,/L.
The horizontal lines represent estimations Ne,, of the low-frequency plateau, which capture the core size of soft quasilocalized modes,

see values reported in Fig. 3(a) and text for further discussions.

indicated by the vertical dashed lines, and features Ne of
order of a few thousands, consistent with the system sizes
employed. Approaching zero frequency, we see that Ne
plateaus at a typical value Neg on the order of a few tens, as
marked by the horizontal dashed lines. The estimated
values of the plateaus Ne( are reported for all investigated
computer glass models in Fig. 3(a). Remarkably, the
variation of Ne across the different models is very small,
of less than a factor of 2 with respect to each other.
Finally, we note that the prefactor A, of the nonphononic
VDOS, namely D(w) = Aga)4, is an observable with
dimensions of an inverse frequency to the fifth power.
A, was discussed at length in [24,25], where it was argued
to encompass information both about the number density of
soft, quasilocalized modes, and about their characteristic
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FIG. 3. Dimensionless characterizers of the nonphononic
VDOS, compared across different classes of glassy solids.
(a) Low-frequency plateau Ne, of the frequency-binned partici-
pation ratio e scaled by N, which represents the core size of soft,
quasilocalized modes. (b) Dimensionless prefactors A, =
A,/(ag/c,)’ of the universal D(w) = A,w* nonphononic VDOS.

stiffness. In those references it was shown that A, can be
very sensitive to glass history, particularly for glasses that
were deeply supercooled prior to their quench to the glass.
Here, we compare A, = A,/(ag/c;)° across our different
computer glasses. The results are displayed in Fig. 3(b); we
find that A, is of order unity in all models, with the
exception of the SW network glass model that fea-
tures A, = 0.25.

We note that the quantities Ne( and A, generally depend
on glass history [24,25,56]. However, these dependencies
are most pronounced for glasses quenched from deeply
supercooled liquids, and are generally weak or entirely
absent for glasses quenched from high temperature liquid
states [24,25,56]. Since in this work we indeed compare
glasses quenched from high temperature liquid states
(much higher than the computer glass transition temper-
ature), the history dependence of Ne, and A, is expected to
be weak or absent, as we demonstrate explicitly in Fig. S2
of [30]. Consequently, our comparison between these
observables across different classes of glass-forming mod-
els is meaningful. We conclude that the energy landscapes
of the computer glasses we investigate here share quanti-
tative similarities that extend beyond the universal scaling
of their nonphononic VDOS.

Summary and outlook.—In this work we have shown that
the low-frequency nonphononic spectra of realistic com-
puter glass models—including network glasses, polymer
glasses, and molecular glasses—feature the universal gap-
less w* law, as seen previously in simple computer glass
models [22-27]. We thus expand the degree of universality
of the w* law to include several qualitatively different
classes of realistic glass-forming models, and reinforce its
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relevance to laboratory glasses. Finally, our results support
the description of glasses’ vibrational properties via mes-
oscale, coarse-grained approaches that consider interacting
oscillators and anharmonicities [11,12], in which the
microscopic details play no role in determining the scaling
with frequency of the nonphononic VDOS.

Our results underline the timeliness of formulating a
first-principles theory that explains the observed univer-
sality of nonphononic spectra in glassy solids. Mean-field
approaches that are based on a microscopic description
[19-21] (rather than a coarse-grained one) predict that the
nonphononic VDOS of glassy solids should scale as @?,
independent of spatial dimension. An important goal for
future studies will be to consolidate the predictions of the
mesoscopic [11,12] and microscopic [19-21] theoretical
approaches.
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Note added.—We note that after the completion of this
work, we became aware of the results obtained by Bonfanti
et al. [29], which support our conclusions.
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