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It was recently shown that different simple models of glass formers with binary interactions define a
universality class in terms of the density of states of their quasilocalized low-frequency modes. Explicitly,
once the hybridization with standard Debye (extended) modes is avoided, a number of such models exhibit
a universal density of states, depending on the mode frequencies as DðωÞ ∼ ω4. It is unknown, however,
how wide this universality class is, and whether it also pertains to more realistic models of glass formers. To
address this issue we present analysis of the quasilocalized modes in silica, a network glass that has both
binary and ternary interactions. We conclude that in three dimensions silica exhibits the very same
frequency dependence at low frequencies, suggesting that this universal form is a generic consequence of
amorphous glassiness.
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Introduction.—Theoretical considerations pointed out
for quite some time [1–4] that low-frequency vibrational
modes in amorphous glassy systems are expected to present
a density of statesDðωÞwith a universal dependence on the
frequency ω, i.e.,

DðωÞ ∼ ω4: ð1Þ

In spite of the fact that numerical simulations of a variety of
model glass formers proliferated in recent years, the direct
verification of this prediction was late in coming. The
reason for this is that the modes which are expected to
exhibit this universal scaling are quasilocalized modes that
in large systems hybridize strongly with low frequency
delocalized elastic (Debye) extended modes, whose density
of states is expected to depend on frequency like ωd−1

where d is the spatial dimension. To observe the universal
scaling Eq. (1) one needs to disentangle these types of
modes. A simple and successful idea was presented in
Ref. [5], using the fact that low frequency Debye modes
have a lower cutoff that is determined by the system size.
By analyzing small enough systems one could isolate the
relevant quasilocalized modes and their density of states,
keeping the lowest available Debye mode cleanly above the
observed frequency range.
Other methods and models were introduced to examine

the density of states of the glassy modes. For example, Baity-
Jesi et al. computed the inherent structures in a Heisenberg
spin glass in a random field by diagonalizing the Hessian
matrix [6] while a similar method was employed by Shimada
et al. for a three-dimensional packing of particles interacting

via short-ranged harmonic interactions [7]. Moriel et al.
studied the attenuation of long-wavelength phonons by
glassy disorder using theory and simulations of a set of
bidisperse particles with repulsive interactions [8] and a
similar model was analyzed in Ref. [9].
Invariably, the demonstration of the universal frequency

dependence Eq. (1) was limited so far to models with
binary interaction only [10,11]. The theoretical analysis of
Refs. [1–4] is, however, much more general, describing low
frequency glassy modes as resulting from soft oscillators in
the neighborhood of stiffer ones, and with long-range
interactions between the soft oscillators. It is therefore
timely and relevant to examine whether the universality
class extends to glass formers of more realistic interactions
[12]. Here we present results for silica glass which has both
binary and ternary interactions. We need to find below how
to avoid the influence of low lying Debye modes, and
discuss how to choose the system size to explore the
density of quasilocalized modes.
System and protocols.—Our model of silica glass is

simulated in three-dimensional cubic boxes for three
different system sizes: (i) N ¼ 222 atoms composed by
NSi ¼ 74 silicon atoms and NO ¼ 148 oxygen atoms. Box
length L ¼ 15 Å, 1000 configurations. (ii) N ¼ 1032
atoms composed by NSi ¼ 344 silicon atoms and NO ¼
688 oxygen atoms. Box length L ¼ 25 Å, 1000 configu-
rations. (iii) N ¼ 4008 atoms composed by NSi ¼ 1336
silicon atoms and NO ¼ 2672 oxygen atoms. Box length
L ¼ 39.3 Å, 250 configurations.
The interaction between atoms is given by the

Watanabe’s potential [13] following Refs. [14,15].
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Details on the potential and parameters used are reported
for completeness in the Supplemental Material [16]. Units
in the following are defined on the basis of energy, length,
and time, being eV, Å, and ps, respectively. The preparation
protocol starts with randomly positioned Si,O atoms,
with density ρin ¼ 2.196 g=cm3, followed by an annealing
procedure: (1) After an initial 2 ps of Newtonian dynamics
with Lennard-Jones interatomic interactions, viscously
damped with a rate of 1=ps and atomic velocities limited
to 1 Å=ps, we switch to our reference Watanabe’s potential
for silica [13]. (2) We perform subsequent 8 ps of damped
Newtonian dynamics. (3) We then heat up the system up to
4000 K and then quench to 0 K in 100 ps, corresponding to
a cooling rate of 40 K=ps. (4) The so-produced configu-
rations are then minimized through the fast inertial relax-
ation engine (FIRE) [17] until the total force on every atom
satisfies jFij ≤ 10−10 eV=Å.
Notice that we use rather fast cooling rates. Slower

cooling rates are typically used in experiments but difficult
to achieve numerically. Previous simulations in a simpler
glass model show that the universal features of the vibra-
tional spectrum do not depend on the cooling rate [5].
Furthermore, by construction, the density of our samples
compares well with experimentally observed values [18]
and with previous calculations of atomic coordination [19].
The low frequency vibrational modes.—Denote as

Uðr1; r2; � � � rNÞ the total potential energy of the system
with frigNi¼1 being the coordinates of the particles. As
usual [20–22], the modes of the system in athermal
conditions (T ¼ 0) are obtained by diagonalizing the
Hessian matrix [23]:

Hαβ
ij ≡ ∂2Uðr1; r2; � � � rNÞ

∂rαi ∂rβj
¼ −

∂Fα
i

∂rβi
: ð2Þ

The mode frequencies ω are obtained by the square root of
the Hessian eigenvalues, and we define ωmin as the lowest
frequency after removing the three translational zero
modes. The eigenvectors provide information on which
modes are localized and which are not, as seen below. In
our simulations, the Hessian matrix is computed numeri-
cally from the first-order derivatives of inter-particle forces,
cf. Eq. (2). Each element Hαβ

ij is obtained by calculating
the force Fα

i on particle i resulting from a displacement of
particle j by a small amount, Δðrβj Þ ¼ 10−7 Å along
positive and negative β direction, and by applying the
difference quotient. All the simulations have been per-
formed using the LAMMPS simulator package [24], and
visualized with the OVITO package [25].
Results.—In Fig. 1 we report the density of states for the

lowest frequencies in each of the three simulated system
sizes. In general we see that the predicted power law ω4 fits
very well the low frequencies tail. Interestingly, for the
smallest system with N ¼ 222 the power law extends

throughout, whereas for the larger two systems we see
the peak belonging to elastic modes sneaking in from
above, invading lower frequencies for the largest system
with N ¼ 4008. To substantiate this, we computed the
participation ratio associated with the modes in the pure
power law regime and with modes whose frequency is
larger than 0.3 THz. Notice that the frequency range has
been binned in linear scale. We have checked that binning
in logarithmic space or changing the size of the bin does not
significantly affects the results.
To understand the range of frequencies for which the

universal law (1) is expected to hold, we note that for the
smallest system with N ¼ 222 (cf. Fig. (1) this range
extends up to ω ≈ 0.4. For the larger systems the range is
smaller, up to about ω ≈ 0.3 for N ¼ 1032, becoming
smallest for N ¼ 4008 where it ends just about ω ≈ 0.2.
We show now that this is due to the invasion of extended
modes which do not belong to the quasilocalized modes
of interest. To establish this we compute the participation
ratio of all the modes, and present the results in Fig. 2. The
participation ratio PR is defined as usual [5],

PR ¼
�
N
X
i

ðei · eiÞ2
�
−1
; ð3Þ

where ei is the ith element of a given eigenvector of the
Hessian matrix. Quasilocalized modes are characterized by
a low participation ratio, below PR ≈ 0.2, whereas fully
extended modes have PR ¼ Oð1Þ. We note that the cutoff
PR ≈ 0.2 is somewhat ad hoc, since very localized modes
have a participation ratio of the order 1=N, whereas the
range of interest of quasilocalized modes includes some-
what larger participation ratios. Examining Fig. 2, we see

FIG. 1. Density of vibrational modes DðωÞ (circles) for three
different system sizes. The dashed line represents the scaling law
DðωÞ ∝ ω4. One learns that the scaling law is obeyed with a
diminishing range when the system size increases. It is shown
below that this is due to invasion of the low frequency range by
extended phonon modes that can hybridize with the quasilocal-
ized modes.
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that for N ¼ 222 modes with PR < 0.2 go all the way to
ω ≈ 0.4 whereas for N ¼ 1032 and N ¼ 4008 the range
ends around ω ≈ 0.3 and ω ≈ 0.2, respectively. This
appears to correlate very nicely with the range of scaling
seen in Fig. (1).
An example of very localized mode, corresponding to

the smallest ω value for a typical configuration with the
largest N ¼ 4008, is shown in Fig. 3. This eigenvector is
associated to an ω ¼ 0.122 THz, and a participation ratio
PR ¼ 0.00111 ∼ 4=4008, meaning that on average just one
thousandth of the atoms is involved by this mode.
To further solidify the universal scaling behavior of the low

frequency quasilocalized modes, we turn now to extremal
statistics. Since we have many configurations in our simu-
lations, we can determine the minimal frequency obtained

from the diagonalization of the Hessian matrix in each and
every configuration, denoting it as ωmin. The average of this
minimal frequency over the ensemble of configurations is
hωmini. Referring to the argument first presented in Ref. [26],
we expect that in systems with N particles,

Z hωmini

0

DðωÞdω ∼ N−1: ð4Þ

Using Eq. (1) we then expect that in three dimensions

hωmini ∼ N−1=5 ∼ L−3=5: ð5Þ
Moreover, since the different realization are uncorrelated, the
values of ωmin are also uncorrelated. Then the celebrated
Weibull theorem [27] predicts that the distribution of ωmin
should obey the Weibull distribution

WðωminÞ ¼
5

hωmini5
ω4
mine

−ðωmin=hωminiÞ5 : ð6Þ

FIG. 2. Participation ratio of all the modes whose frequency
ω < 1 as a function of the frequency. The highlighted line is the
average over the participation ratios of modes in the same band of
frequencies.

FIG. 3. Orthogonal view of the eigenvector corresponding to
ωmin, for a typical configuration with N ¼ 4008. Arrows are
colored with respect to the modulus e of the vectors, from black
(e ¼ 0) to red (e ¼ 0.6). Arrows have been magnified by a factor
of 10.

FIG. 4. Distribution of the minimal vibrational frequency
PðωminÞ for the three investigated sizes. The dashed lines are
the corresponding Weibull distribution Eq. (6).

FIG. 5. Distribution of the minimal vibrational frequency
PðωminÞ plotted as a function of the rescaled frequency ωL

3
5.

The dashed black line represents the Weibull distribution.
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Indeed, in Fig. 4 the distribution of ωmin for the three system
size is shown, together with the expected distribution Eq. (6).
Finally, the scaling shown by Eq. (5) indicates that these
distribution can be collapsed by plotting them as a function of
the rescaledminimal frequencyωminL3=5. The rescalingof the
curves by L3=5 is reported in Fig. 5.
Summary and conclusions.—The main aim of the Letter

was to examine whether the universality class that is
expressed in Eq. (1) extends beyond glass formers with
binary interactions. As already mentioned, quite convinc-
ing theoretical considerations predict that this universality
class should be wider [1–4]. Hybridization of the glassy
quasi-localized modes with regular phonon extended
modes obscured for a long time the validity of Eq. (1)
for the former. By considering small systems, this
hybridization can be avoided, exposing the universal
nature of the density of states of the quasilocalized modes.
The results presented above show that a structural glass-
like silica, with many-body interactions much exceeding
the spherical symmetry, also exhibits a dependence of the
density of quasilocalized modes on their frequency
according to Eq. (1).
We note that this and other demonstrations of the

universal law Eq. (1) are achieved in athermal glasses at
T ¼ 0. A separate discussion is necessary for a thermal
system. In that case, the configurations involved are time
dependent, and there is a question on which Hessian is
appropriate for describing the relevant modes. Some ideas
relevant to this question are presented in Ref. [22], but the
computation of the density of states remains a task for
future research.
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