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Warm dense matter (WDM)—an extreme state with high temperatures and densities that occurs, e.g., in
astrophysical objects—constitutes one of the most active fields in plasma physics and materials science.
These conditions can be realized in the lab by shock compression or laser excitation, and the most accurate
experimental diagnostics is achieved with lasers and free electron lasers which is theoretically modeled
using linear response theory. Here, we present first ab initio path integral Monte Carlo results for the
nonlinear density response of correlated electrons in WDM and show that for many situations of
experimental relevance nonlinear effects cannot be neglected.

DOI: 10.1103/PhysRevLett.125.085001

Warm dense matter (WDM) is an exotic state with
extreme densities (rs ¼ r̄=aB ∼ 1 with r̄ and aB being
the average inter-electron distance and first Bohr radius)
and high temperatures (θ ¼ kBT=EF ∼ 1 with T and EF
being the temperature and Fermi energy) that occurs, e.g.,
in astrophysical objects [1–4] on timescales of 106 years, in
laser-excited solids [5,6] over femto- to picoseconds, and
on the pathway towards inertial confinement fusion [7] over
nano- to microseconds. Consequently, WDM has emerged
as one of the most active frontiers in plasma physics and
material science [8–10], andWDM conditions are routinely
realized in experiments in large research facilities around
the globe (e.g., NIF, SLAC, and the European XFEL); see
Refs. [11–13] for review articles.
On the other hand, the theoretical description of WDM

constitutes a formidable challenge [14,15] due to the
complicated interplay of (i) Coulomb coupling, (ii) thermal
excitations, and (iii) electronic quantum degeneracy effects.
Moreover, the bulk of WDM theory assumes a weak
response of the electrons to an external perturbation, i.e.,
they rely on linear response theory (LRT). This assumption
enters, for example, in the interpretation of XRTS experi-
ments [9,16], the characterization of the stopping power
in WDM [17], the construction of effective potentials
[18–20], density functional theory (DFT) calculations
[21,22], and the computation of energy relaxation rates
[6,23,24]. Consequently, numerous works have been
devoted to the description of the density response of
electrons both in the ground state [25–34] and at finite
temperature [35–43]. These efforts have culminated in the
recent machine-learning representation [44] of the static
electronic density response that is based on ab initio path
integral Monte Carlo (PIMC) simulations [45–47] and
covers the entire WDM regime. Moreover, even the

dynamic density response can be computed from PIMC
simulations [48,49], and the reported negative dispersion
relation of a uniform electron gas (UEG) constitutes an
active topic of investigation.
On the other hand, very little is known about the density

response of correlated electrons beyond the linear regime.
In particular, it is unclear up to which perturbation strength
LRT remains accurate. This question becomes increasingly
urgent, as free electron lasers become more powerful and
peak intensities of up to I ∼ 1022 W=cm2 [50] have been
reported. Furthermore, intense VUV lasers are used to
probe WDM [51]. A particular promising tool is THz lasers
[52] as they allow for probing the low-frequency end of the
density response, short pulse characterization, and streak-
ing [53–55]. Yet, THz field applications might require in
many cases a theoretical description beyond LRT, as we
indicate below.
In this work, we go beyond linear response theory by

carrying out extensive PIMC simulations of a harmoni-
cally perturbed electron gas [41,42] [cf. Eq. (1) below] at
WDM conditions. This allows us to measure the actual
density response of the electrons without any a priori
assumptions and, thus, to unambiguously characterize
the validity range of LRT. In addition, going beyond the
linear regime allows us to gauge the systematic errors of
LRT as a function of perturbation strength, and to report
the first results for the cubic response function χ3ðqÞ
over the entire relevant wave number range for different
densities and temperatures including all exchange-
correlation effects. Therefore, our results provide the
basis for a generalized theory of the electronic density
response beyond LRT, extending earlier work for
classical plasmas [56,57] and moderately coupled quan-
tum plasmas [58,59].
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Our investigation of the nonlinear density response of
electrons in WDM should be relevant for many other fields,
and spark similar investigations in other domains as we
note that LRT is one of the most successful concepts in
physics [60,61]. It is of paramount importance in many
fields, such as for describing phonons in solid state physics
[62,63], excitations in systems of ultracold atoms [64,65],
and screening or quasiparticle excitations in plasmas
[66,67]. Moreover, it has allowed for profound physical
insights into, e.g., superfluidity [65,68], collective excita-
tions [25,69], and quantum dynamics [21,70].
Results.—We simulate a harmonically perturbed electron

gas of system size N governed by the Hamiltonian (we
assume Hartree atomic units throughout this work)

Ĥ ¼ ĤUEG þ 2A
XN

k¼1

cos ðr̂k · qÞ; ð1Þ

with ĤUEG being the unperturbed UEG Hamiltonian
[47,61,71], rk the electronic coordinates, and the wave
vector q ¼ 2π=Lðnx; ny; nzÞT (with ni ∈ Z, and L being
the length of the cubic simulation box). The perturbation
amplitude A can, e.g., be the amplitude of an external
electric field in the plasma or the modulation of the
potential depth in an optical lattice [72]. Of particular
relevance for WDM experiments is the realization of the
modulation in Eq. (1) by a laser pulse; see Ref. [73] for
details. We use a canonical adaption [80] of the worm
algorithm by Boninsegni et al. [81,82] without any
assumptions on the nodal structure of the thermal density
matrix. Therefore, our simulations are computationally
involved due to the fermion sign problem [83,84], but
are exact within the given statistical uncertainty.
To measure the density response, we compute the

induced density

ρðq; AÞ ≔ hρ̂qiA ¼ 1

V

�XN

k¼1

e−iq·r̂k
�

A

; ð2Þ

where h…iA indicates the expectation value computed from
Eq. (1). The PIMC results for Eq. (2) are shown in Fig. 1(a)
as the green crosses for the electron gas with a metallic
density (rs ¼ 2) at the Fermi temperature, θ ¼ 1, for a
wave number of q ≈ 0.84qF. First and foremost, we note
that an increase in the perturbation strength leads to
increasing deviations from a spatially homogeneous den-
sity profile, which, in turn, is measured by Eq. (2). For
small A, LRT is accurate and it holds ρðq; AÞ ¼ χðqÞA, and
the density response function χðqÞ does not depend on A.
Further, the linear response function can be computed from
a simulation of the unperturbed UEG via the relation

χðqÞ ¼ −n
Z

β

0

dτFðq; τÞ; ð3Þ

with Fðq; τÞ being the intermediate scattering function [9]
evaluated at an imaginary time argument τ ∈ ½0; β�, see
Ref. [44] for details. The LRT result for ρ as obtained from
Eq. (3) is depicted by the solid red line and is in excellent
agreement to the PIMC data for A≲ 0.15. This can be seen
particularly well in Fig. 1(b), where the black squares
correspond to the relative deviation between the PIMC data
and LRT.
Yet, the system cannot react arbitrarily strongly with

increasing A (this would lead to a negative density at the
maxima of the external perturbation), and the response
has to eventually saturate. Therefore, LRT systematically
overestimates ρ, and the deviation to LRT appears to be
parabolic in the depicted A range. Indeed, it is well known
[31,32] that the first term beyond χðqÞ is cubic in A and can
be obtained by fitting the PIMC data to

ρðq; AÞ ¼ χ1ðqÞAþ χ3ðqÞA3 þ � � � ; ð4Þ

where χ1ðqÞ and χ3ðqÞ are the free parameters [85]. The
results for Eq. (4) are included in Fig. 1(a) as the dashed
blue curve, and exhibit a significantly improved agreement
with the PIMC data as compared to LRT. The vertical
dashed gray line corresponds to the maximum A value that
has been included into the fit, but Eq. (4) remains accurate
for significantly larger perturbation strengths, see also
panel (b). For completeness, we mention that it is, in
principle, redundant to obtain χ1ðqÞ from the PIMC data, as
it is already known from Eq. (3). On the other hand,

(a)

(b)

FIG. 1. Density response of the UEG for N ¼ 14, rs ¼ 2, and
θ ¼ 1 with q ≈ 0.84qF in dependence of the perturbation
amplitude A [cf. Eq. (1)]. Panel (a) shows the PIMC data for
the induced density ρ (green crosses), the prediction from LRT
[solid red, cf. Eq. (3)], and a cubic fit [dotted blue, cf. Eq. (4)] as
well as the linear component thereof (dashed black). Panel
(b) shows the deviation of LRT (black squares) and the cubic
fit (blue diamonds) from the PIMC data. The vertical gray dashed
line corresponds to the maximum A value that has been included
in the fit.

PHYSICAL REVIEW LETTERS 125, 085001 (2020)

085001-2



comparing the two allows to check the consistency of our
approach, and the two independent estimations of the LRT
function are in perfect agreement with an uncertainty
interval of 0.1%, see the dashed black line in panel (a).
Let us next investigate the dependence of the response

function on the wave number q. This is shown in Fig. 2(a)
where the top and bottom half correspond to the cubic and
linear response, respectively. The red symbols correspond
to the usual LRT function computed from Eq. (3) for
N ¼ 14 (diamonds) and N ¼ 20 (stars), and the dashed red
line to χðqÞ computed in the thermodynamic limit
(N → ∞) from the neural-net representation given in
Ref. [44]. We note that they are in good agreement, as
finite-size effects are small in this regime [44]. The black
and blue symbols have been obtained from our new PIMC
simulations of the perturbed system as

χðq; AÞ ¼ ρðq; AÞ
A

ð5Þ

such that this pseudo response function converges to LRT
in the limit of small perturbations, limA→0 χðq; AÞ ¼ χðqÞ.
For A ¼ 0.2 (black symbols), Eq. (5) is in good agreement
to the LRT data both for small and large q, but system-
atically deviates around q ∼ qF. For A ¼ 0.5 (blue sym-
bols), the pseudo response function systematically
underestimates the density response over the entire
depicted q range, and the discrepancy is again most
pronounced for intermediate wave numbers, with a maxi-
mum deviation of ∼20%. To more systematically inves-
tigate this trend, we have performed extensive A scans such
as depicted in Fig. 1 for different q values over the entire
relevant wave number range [73]. This has allowed us to
obtain the first results for the cubic response function χ3ðqÞ,

which are shown in the top half of Fig. 2(a) as the
green data points. As a side note, we mention that a single
χ3ðqÞ point requires 10–15 independent PIMC simulations
of Eq. (1) with different A values for each wave number,
which results in a total computation cost of Oð107Þ
CPU hours.
Overall, χ3ðqÞ qualitatively somewhat mirrors χðqÞ,

although with some pronounced differences. First and
foremost, we find that no finite-size effects can be resolved
within the given error bars, and the only difference between
N ¼ 14 and N ¼ 20 is the different q grid [87,88].
Moreover, χ3ðqÞ always has the opposite sign of χðqÞ,
as the system cannot react arbitrarily strong to the pertur-
bation, and the response eventually saturates. While both
the linear and the cubic response function vanish in the
large- and small-q limits, this happens significantly sooner
for the latter function. Heuristically, this can be understood
as follows: for large q values, only single-particle effects
contribute to the response, the system as a whole remains
hardly affected, and LRT is sufficient; further, the response
is suppressed by the perfect screening [89] in the small-q
limit. Similarly, we have found that both LRT and the cubic
theory remain valid for larger A in both of these cases; see
also Ref. [73]. Lastly, we find that the maximum in χ3ðqÞ
appears to be slightly shifted to larger q values compared to
χðqÞ, see also panel (b) for the same trend at rs ¼ 6.
Let us next investigate the dependence of the cubic

response on the density parameter rs. To this end, we repeat
our previous study for rs ¼ 6, and the results are shown in
Fig. 2(b) for θ ¼ 1. While such low densities are not typical
for WDM applications, they can be realized experimentally
in hydrogen jets [51] and evaporation experiments, e.g.,
at the Sandia Z-machine [90–93]. On the other hand,
these conditions are highly interesting from a theoretical

(a) (b) (c)

FIG. 2. Density response of an electron gas to an external harmonic perturbation at different conditions. Panels (a) and (b) show results
for θ ¼ 1 and rs ¼ 2 and rs ¼ 6, respectively. The top halves correspond to the cubic response function χ3ðqÞ [computed via fits,
cf. Eq. (4)], and the bottom half to the (pseudo-) linear response function χðqÞ from LRT [red, cf. Eq. (3)], and for different perturbation
amplitudes [black and blue, cf. Eq. (5)]. Panel (c) corresponds to rs ¼ 2 for θ ¼ 4 (blue), θ ¼ 2 (green), and θ ¼ 1 (red) and shows χ3
and χ (from LRT) in the top and bottom half. The diamonds, stars, and crosses correspond to N ¼ 14, 20, and 34. The dashed curves
depict the LRT prediction computed from a recent machine-learning representation [44] of the static local field correction.

PHYSICAL REVIEW LETTERS 125, 085001 (2020)

085001-3



point of view, as electronic exchange-correlation effects
are even more important due to the increased coupling
strength [47,94,95].
First and foremost, we find that the nonlinear behavior of

the density response appears for significantly smaller per-
turbation amplitudes as compared to rs ¼ 2, which is due to
the different energy scales in the system [96]. For example,
for A ¼ 0.1 the actual response (blue symbols) is suppressed
by around 30%, whereas hardly any effect would be noticed
at the higher density in this case. Overall, both χðqÞ and
χ3ðqÞ exhibit a similar structure as for rs ¼ 2, but are
somewhat more symmetric around the maximum at
q ≈ 2qF. Moreover, χ3ðqÞ nearly vanishes for the smallest
depicted q value (the leftmost green cross, corresponding to
N ¼ 34) and we find a value more than 2 orders of
magnitude smaller than for q ¼ 2qF. Again, no system-size
dependence of χ3ðqÞ can be resolved within the given
confidence interval even for N ¼ 34 electrons (crosses).
Another interesting question is how nonlinear effects are

influenced by the temperature. To this end, we return to
rs ¼ 2 for θ ¼ 1 (red), θ ¼ 2 (green), and θ ¼ 4 (blue) in
Fig. 2(c). With increasing temperature, the linear response
function monotonically decreases in magnitude as it is
expected, see the bottom half. The same also holds for the
cubic response function, where this trend is drastically
more pronounced compared to χðqÞ. While the maximum
in χðqÞ is reduced by a factor of 3 upon going from θ ¼ 1 to
θ ¼ 4, the cubic response is reduced by a factor of 20.
This behavior is further illustrated in Fig. 3, where we

show the A dependence of the induced density for the three
temperatures at q ≈ 1.69qF, i.e., around the maximum of
the density response. The different symbols correspond to
our PIMC data, and the dotted lines to the prediction from
LRT, i.e., Eq. (3). There are two dominant trends: (i) the
actual density response is smaller for large θ and (ii) LRT
remains accurate for larger A.
Let us conclude this investigation by briefly touching

upon the impact of our findings on state-of-the-art WDM

experiments. A typical free electron laser with a frequency
corresponding to a photon energy of 8 keVand an intensity
of I ∼ 1017–19 W=cm2 corresponds to an approximate
perturbation amplitude on the order of A ∼ 10−5–10−3

(see the Supplemental Material [73] for details), which
falls safely into the LRT regime even for low densities. On
the other hand, intensities of up to I ¼ 1022 W=cm2 have
been reported recently by employing the novel seeding
technique [50], which results in A ∼ 2 and clearly violates
the boundaries of LRT for both for rs ¼ 2 and rs ¼ 6.
Even current VUV lasers like Flash are capable of
reaching the nonlinear regime [51,73]. Another applica-
tion of our findings concerns the experimental probing
of the low-frequency response of WDM using THz lasers
[52]. For example, the recently reported setup with an
intensity of 600 kV=cm at around 1 THz leads to a
perturbation amplitude of A ¼ 0.29 Ha, such that a
thorough theoretical interpretation of a corresponding
scattering signal would most likely require us to take into
account nonlinear effects.
Summary.—We have carried out extensive ab initio

PIMC simulations of the harmonically perturbed electron
gas. This has allowed us to (i) unambiguously characterize
the validity range of LRT and (ii) to obtain the first results
for the cubic response function χ3ðqÞ of the warm dense
electron gas, including all exchange-correlation effects.
First, we have found that including χ3ðqÞ significantly
improves the accuracy of the density response function for
larger perturbation amplitudes. Moreover, nonlinear effects
are particularly important for intermediate wave numbers
q ∼ qF, whereas χ3ðqÞ vanishes both in the small- and
large-q regimes. Regarding physical parameters, we have
found that nonlinear effects become more important at
lower densities due to the intrinsic energy scale of the
system. This makes materials of relatively low density a
highly interesting laboratory to study the interplay of
nonlinearity with electronic exchange-correlation effects,
and a challenging benchmark for theory.
In addition, we have found that nonlinear effects are

severely affected by the electronic temperature and vanish
upon increasing θ. While our current simulations are
limited to temperatures down to the Fermi temperature
(θ ¼ 1), this is a strong indication that nonlinear effects
might be even more important for lower temperatures
θ ¼ 0.1…0.5, where many WDM experiments are located.
Our findings are particularly relevant for state-of-the-art

WDM experiments with intense free electron lasers in the
x-ray or VUV regime, and for low-frequency probing in the
THz regime, where the diagnostics methods rely on theory
input for the response functions [50–52]. Finally, our
results will also be important for nonlinear optical diag-
nostics such as Raman or four-wave mixing spectroscopy,
e.g., Refs. [97–99], or THz streaking [100] that could
provide additional information on correlation effects in
warm dense matter.

FIG. 3. Density response of the UEG for N ¼ 14 and rs ¼ 2
with q ≈ 1.69qF in dependence of the perturbation amplitude A
[cf. Eq. (1)]. Shown are PIMC data for the induced density ρ
for θ ¼ 1 (red circles), θ ¼ 2 (green crosses), and θ ¼ 4 (blue
diamonds), as well as the corresponding predictions from LRT
[dotted black, cf. Eq. (3)].
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All PIMC data are available online [73] and can be used
to benchmark approximate theories like DFT. Moreover,
our new data are exact within the given confidence interval
and thus provide the basis for a more general theory of the
electronic density response beyond LRT thus further
completing our understanding of the electron gas as a
fundamental model system [47,101].
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