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Noether’s theorem relates constants of motion to the symmetries of the system. Here we investigate a
manifestation of Noether’s theorem in non-Hermitian systems, where the inner product is defined
differently from quantum mechanics. In this framework, a generalized symmetry that we term
pseudochirality emerges naturally as the counterpart of symmetries defined by a commutation relation
in quantum mechanics. Using this observation, we reveal previously unidentified constants of motion in
non-Hermitian systems with parity-time and chiral symmetries. We further elaborate the disparate
implications of pseudochirality induced constant of motion: It signals the pair excitation of a generalized
“particle” and the corresponding “hole” but vanishes universally when the pseudochiral operator is
antisymmetric. This disparity, when manifested in a non-Hermitian topological lattice with the Landau
gauge, depends on whether the lattice size is even or odd. We further discuss previously unidentified
symmetries of this non-Hermitian topological system, and we reveal how its constant of motion due to
pseudochirality can be used as an indicator of whether a pure chiral edge state is excited.
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Noether’s theorem is a powerful statement that relates the
symmetries of the system to its constants of motion or
conservation laws. In classical mechanics, both energy and
momentum conservation can be derived from Noether’s
theorem under the invariance of time and spatial trans-
lations, using, for example, the Hamiltonian’s equation of
motion with the Poisson bracket as its special form.
Correspondingly, a manifestation of Noether’s theorem
in quantum mechanics is often expressed using the
Ehrenfest’s theorem [1] in the Schrödinger picture:

d
dt

hAi ¼ 1

iℏ
h½A;H�i þ

�
dA
dt

�
; ð1Þ

where the commutation relation replaces the Poisson
bracket. For an operatorAwithout explicit time dependence,
it then follows that its expectation value hAi is a constant of
motion when it commutes with the Hamiltonian.
Ehrenfest’s theorem is a restatement of the Schrödinger

equation and the fact that the Hamiltonian in quantum
mechanics is Hermitian. Meanwhile, the study of non-
Hermitian systems and their unique properties have attracted
fast growing interest in the last two decades [2–6], especially
those empowered by parity-time (PT) symmetry [7]. While
its ramification in quantum theories is still under intense
investigation, its application in different fields has led to a
plethora of findings, ranging from nonlinear dynamics [8],
atomic physics [9], photonics [2], acoustics [10], microwave
[11], electronics [12], to quantum information science [13].
Subsequent explorations have also revealed other novel
non-Hermitian symmetries, including, for example, anti-PT

symmetry [14,15], odd-time-reversal PT symmetry [16,17],
non-Hermitian particle-hole (NHPH) symmetry [18–21],
and non-Hermitian chiral symmetry [21–23]. Benefiting
from these findings, different devices such as single-mode
lasers [24,25], robust power transfer circuits [12], laser–
anti-lasers [26–29] and on-chip lasers carrying orbital
angular momentum [30] have been demonstrated, which
also shine light on a new type of light-matter interaction [11].
Being non-Hermitian, the total energy or particle number

is not a constant of motion in such systems in general, but
the aforementioned symmetries do lead to generalized
conservation laws [31–35]. These findings, however, were
obtained either using other techniques or by following
closely the Hermitian manifestation of Noether’s theorem.
For example, the generalized flux conservation relation
j1 − Tj ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

RLRR
p

that relates the reciprocal transmittance
T in a one-dimensional PT-symmetric waveguide to the
directional reflectance RL;R was found by analyzing the
structure of the scattering matrix [33]. And the conserved
pseudonorms, e.g., the expectation value of either the
parity operator [31] or the metric η that defines pseudo-
Hermiticity [32], were proposed to justify quantum theories
with non-Hermitian Hamiltonians, where the inner product
between a bra and a ket state is defined using the same
convention as in quantum mechanics.
In this Letter, we first propose to study an alternative

form of Ehrenfest’s theorem, which leads to a previously
unknown extension of Noether’s theorem in non-Hermitian
systems. A generalized symmetry, which we term pseudo-
chirality, emerges naturally and replaces the standard
symmetry defined by a commutation relation in quantum
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mechanics. Based on this observation, we identify and
analyze previously overlooked constants of motion in non-
Hermitian systems. We start with a simple pseudospin
Hamiltonian, where the contrast and connection between
pseudochirality and chiral symmetry are examined. The
disparate physical implications of pseudochirality induced
constant of motion are then elucidated: It signals the pair
excitation of a generalized “particle” and the corresponding
“hole” in general, and it vanishes universally when the
pseudochiral operator is antisymmetric. We show that this
disparity, when manifested in a non-Hermitian topological
lattice with the Landau gauge, depends on whether the
lattice size is even or odd. We further discuss previously
unidentified symmetries of this non-Hermitian topological
system, and we reveal how its constant of motion due to
pseudochirality can be used as an indicator of whether a
pure chiral edge state is excited.
The most natural extension of Ehrenfest’s theorem in

non-Hermitian systems is to replace a Hermitian H by a
non-Hermitian one. The structure of Ehrenfest’s theorem
does not change, and one is only required to keep H†

separated from H. The result is given by

d
dt

hAi ¼ 1

iℏ
hAH −H†Ai þ

�
dA
dt

�
; ð2Þ

and we recover Ehrenfest’s theorem given by Eq. (1)
when H is Hermitian. Here A, as all observables are in
quantum mechanics [36], is a linear operator that satisfies
A½aψ þ bψ 0� ¼ aAψ þ bAψ 0ða; b ∈ CÞ. Equation (2) then
indicates that for a time-independent operator A, its expect-
ation value hAi is a constant of motion if AH ¼ H†A, or

H† ¼ AHA−1 ð3Þ

when A is invertible. This observation led to the introduc-
tion of pseudo-Hermiticity in non-Hermitian systems [32],
where A is interpreted as a metric.
To explore previously unknown extensions of Noether’s

theorem in non-Hermitian systems, we first note that there
is more than one way to define the inner product in non-
Hermitian systems. In our discussion below, we define it
without the complex conjugation, i.e.,

ðμjνÞ≡ ψT
μψν: ð4Þ

We focus on systems with an asymmetric Hamiltonian (i.e.,
H ≠ HT), and hence this inner product is distinct from the
biorthogonal product to be discussed below. With this inner
product, we find that the temporal evolution of ðAÞ≡
ðψ jAjψÞ is given by [37]

d
dt

ðAÞ ¼ 1

iℏ
ðAH þHTAÞ þ

�
dA
dt

�
: ð5Þ

It then indicates that (A) is a constant of motion when A
does not depend on time explicitly and satisfies AH ¼
−HTA, or

HT ¼ −AHA−1 ð6Þ

when A is invertible.
We refer to the symmetry defined by Eq. (6) as

pseudochirality, not just because it involves a similar
transformation as in the definition of pseudo-Hermiticity,
but also due to the fact that it warrants, as we will show, a
symmetric spectrum about the origin of the complex energy
plane, similar to the consequence of chiral symmetry in
non-Hermitian systems [19,21,22]. Here chiral symmetry
in both Hermitian [38] and non-Hermitian systems [37] is
defined by fH;Ξg ¼ 0, and it differs from pseudochirality
by the absence of the matrix transpose.
This transpose, however, has a profound consequence:

unlike the chiral operator Ξ or any standard symmetry
operators, A does not transform one (right) eigenstate of H
into another. Instead, it maps a right eigenstate of H to one
left eigenstate: The left and right eigenstates of a non-
Hermitian Hamiltonian are defined by [5]

Hψμ ¼ ωμψμ; ψ̄T
μH ¼ ωμψ̄

T
μ : ð7Þ

We note that a pair of ψμ and ψ̄μ are different in general but
share the same eigenvalue ωμ. In addition, they satisfy the
biorthogonal relation

ðμ̄jνÞ≡ ψ̄T
μψν ¼ δμν ð8Þ

away from an exceptional point [37]. The second relation in
Eq. (7) is also often written as HT ψ̄μ ¼ ωμψ̄μ, and a
Hamiltonian with pseudochirality then has the following
property:

HT ½Aψμ� ¼ −AHψμ ¼ −ωμ½Aψμ�; ð9Þ

which indicates that Aψμ ≡ cψ̄ν is a left eigenstate of H
with eigenvalue ων ¼ −ωμ, where c is a factor to be
determined by normalization [37]. In other words, the
spectrum ofH is symmetric about the origin of the complex
energy plane, and A maps a right eigenstate of H to one of
its left eigenstates. This unique property also hints at
the contrasting behaviors of pseudochirality and chiral
symmetry in terms of fulfilling Wigner’s theorem [36], a
fundamental proposition regarding possible forms of
symmetries in quantum mechanics [37].
As mentioned before, the biorthogonal relation in Eq. (8)

is different from the non-Hermitian inner product defined in
Eq. (4). As a result, they have distinct properties, and most
noticeably, ðμ̄jμÞ vanishes at an exceptional point of ωμ

while ðμjμÞ does not. These two inner products become the
same only when the Hamiltonian is symmetric, and so do
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the left and right eigenstates. One could define an alter-
native non-Hermitian expectation value in the same spirit of
the biorthogonal product, whose equation of motion,
however, does not lead to a new symmetry [37].
We start our exploration of constants of motion in

non-Hermitian systems by considering the pseudospin
Hamiltonian Hs ¼ b⃗ · σ⃗, where b⃗ ¼ ½b1; b2; b3� is an arbi-
trary complex vector and σ⃗ ¼ ½σ1; σ2; σ3� consists of the
three Pauli matrices. Hs is Hermitian only when b1;2;3 are
real, and it gives the most studied form of PT-symmetric
Hamiltonians when b2 ¼ 0 and b1; ib3 ∈ R [37]. The two
eigenvalues of Hs are given by

λ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22 þ b23

q
¼ −λ2; ð10Þ

which indicates the presence of either chiral symmetry or
pseudochirality. In fact, both symmetries are properties of
Hs, e.g.,

fΠ; Hg ¼ 0; HT ¼ −AHA−1; ð11Þ

where Π≡ b3σ1 − b1σz and A ¼ A−1 ¼ σ2.
Noether’s theorem manifested by Eq. (5) tells us that (A)

is a constant of motion in this system for an arbitrary b⃗
while (Π) is not. We verify this prediction using a set of
experiment-friendly parameters in Fig. 1(a), with real b1;2
but leaving b3 complex, representing two complex-detuned
oscillators (such as optical waveguides or cavities) and
asymmetric couplings with opposite phases. This dimer is
one essential building block in non-Hermitian topological

systems [44–46] as we will see later in Fig. 2. If the
system (and the coupling) becomes symmetric, i.e., b2 ¼ 0
[Fig. 1(b)], (Π) is now a conserved quantity as well
[Fig. 1(d)]. This is because Π is also a pseudochirality
operator when the Hamiltonian is symmetric, with the
additional transpose of H that differentiates the two
symmetries inconsequential now.
In both cases, we find ðAÞ ¼ iψ2ψ1 − iψ1ψ2 ¼ 0 for an

arbitrary state ψ ¼ ½ψ1;ψ2�T . While obvious in this case, it
is a universal property due to AT ¼ −A. More generally, let
us consider a pair of generalized (and charge-neutral)
particle ψμ and hole ψν with ωμ ¼ −ων that are related
by pseudochirality through their biorthogonal partners ψ̄μ;ν.
We impose the biorthogonal relation (8) and write
Aψμ ¼ ψ̄ν, Aψν ¼ cψ̄μ, which leads to

1 ¼ ðμ̄jμÞ ¼ ψT
ν
ATA−1

c
ψ̄ν: ð12Þ

This expression dictates that c ¼ −1 if AT ¼ −A, which is
seen when compared with 1 ¼ ðν̄jνÞ ¼ ψT

ν ψ̄ν. Now if ψ is
an arbitrary superposition of this particle-hole pair, i.e.,
ψ ¼ bμψμ þ bνψνðbμ;ν ∈ CÞ, then ðAÞ¼bμbν½ðνjAjμÞ þ
ðμjAjνÞ�¼bμbν½ðν̄jνÞ−ðμ̄jμÞ�¼0. It can be easily checked
that this result holds when ψ consists of multiple particle-
hole pairs, even when they are degenerate zero modes
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FIG. 1. Constants of motion due to pseudochirality in
a non-Hermitian dimer. (a),(b) Intensity evolution in the dimer
as a function of time. b1;2 ¼ 1, 1 in (a) and −

ffiffiffi
2

p
; 0 in (b),

reflected by the asymmetric and symmetric couplings in the
insets. In both cases ψ1 ¼ 2, ψ2 ¼ 1 at t ¼ 0 and b3 ¼ 1þ 0.1i.
Spatial Gaussian mode profiles are imposed along x. (c),(d)
Constant(s) of motion in the two cases.
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FIG. 2. Non-Hermitian symmetries in a topological lattice with
the Landau gauge. (a) Schematic showing the couplings and the
gain (left) and loss (right) edges. (b) Its band structure showing
one quarter of the first Brillouin zone. The lattice constant is
set to 1. (c) Eigenvalues ofH in an 11 × 11 lattice. Clustered dots
in BD1 give the CW chiral edge band, and the large dot shows the
mode plotted in Fig. 3(a). (d) Same as (c) but with gain on both
edges. High-gain modes are enlarged.
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(i.e., ωμ ¼ −ων ¼ 0) because Eq. (12) does not rely on the
energy values.
A disparate behavior is observed for a generic pseudo-

chirality operator A (i.e., not antisymmetric), where c in
Eq. (12) does not take a specific value. (A) now signals the
pair excitation of a generalized particle and the correspond-
ing hole in non-Hermitian systems. From our discussion
above, it follows that this pair excitation is zero when only
one constituent of a particle-hole pair is excited (i.e., either
bμ or bν is zero), even when there are mixed particles and
holes from different pairs in the system; it is nonzero when
both constituents of a particle-hole pair are excited, even if
there is only one such pair present in the system [see (Π) in
Fig. 1(d), for example]. A special case occurs when the
system has a zero mode ψ0 that is mapped by pseudochir-
ality to its left eigenstate ψ̄0. We consider it as both a
particle and a hole, and (A) is also finite even when just this
zero mode is excited.
To exemplify this disparity and the pair excitation

indicated by (A), we consider the n × n topological
photonic lattice shown in Fig. 2(a). It has the same coupling
g in the vertical direction, and the asymmetric couplings in
the horizontal direction are constants in each row, with their
phases increased by π=2 successively in the vertical
direction. This configuration can be realized using spatially
displaced ring couplers [44–48], and it leads to a synthetic
gauge field for photons, with each of the smallest plaquettes
pierced by a flux of π=2.
In the absence of on-site potentials, the underlying

Hermitian system has sublattice symmetry, and its band
structure is shown in Fig. 2(b) with a Dirac cone at the Γ
point. With an arbitrarily gain and loss landscape imposed,
sublattice symmetry is lifted and it was unclear whether
this type of non-Hermitian topological insulators still has
symmetry protection [20], either in the form of ωμ ¼ −ων

or Re½ωμ� ¼ −Re½ων�. No non-Hermitian chiral symmetries
have been reported in this case, and the NHPH symmetry
identified in Refs. [18,21], which exists in a wide range of
non-Hermitian systems and leads to Re½ωμ� ¼ −Re½ων�,
does not appear here due to the asymmetric (albeit
Hermitian) couplings.
Nevertheless, this NHPH symmetry can be viewed as a

special form of pseudo-anti-Hermiticity [49], i.e.,

ηH†η−1 ¼ −H; ð13Þ

which takes the form fηK;Hg ¼ 0 (K: complex conjuga-
tion) when H is symmetric. Remarkably, we find that this
non-Hermitian topological lattice in fact possesses pseudo-
anti-Hermiticity, even when the gain is just along the edges
or random (as in the recent experiments of topological
insulator lasers [44–46]). Pseudo-anti-Hermiticity leads to
ωμ ¼ −ω�

ν [Fig. 2(d)], or, equivalently, Re½ωμ� ¼ −Re½ων�,
and its symmetry operator is given by η ¼ PA − PB ≡ C
[37], where PA;B are the projection operators onto the two

sublattices indicated by solid and open dots in Fig. 2(a). It is
easy to show that pseudochirality is then present alongside
PT symmetry, with the former specified by A ¼ PC.
We realize this scheme by introducing a gain edge and a

loss edge with on-site potential �iγ on the left and right
sides [Fig. 2(a)], and the resulting complex spectrum, at
γ ¼ g=10, reflects the three aforementioned symmetries of
this system [Fig. 2(c)]. Below we focus on the bottom band
gap [BD1 in Fig. 2(c)], where one chiral edge band emerges
in a finite system [44] just like in the Hermitian case.
However, unlike the Hermitian case, the direction of a
chiral edge state can now be easily identified by visualizing
its spatial profile [Fig. 3(a)]: it is clearly a clockwise (CW)
mode, because its intensity increases from bottom to top
along the left (gain) edge and reduces from top to bottom
along the right (loss) edge.
Noether’s theorem manifested by Eq. (5) indicates that

(A) is a constant of motion. Because of the structure of
A ¼ PC, we find that A is antisymmetric (symmetric) when
this lattice size n is even (odd) [37]. As a result, (A)
vanishes universally when n is even but indicates the pair
excitation of particles and holes when n is odd, even though
their spectra are essentially the same with the n-odd case
having a zero mode [Fig. 3(b)].
A special observation based on these predictions is that

(A) now differentiates the excitation of a pure CCWor CW
chiral edge propagation (“state”) versus its copropagating
counterpart. This finding is illustrated in Fig. 3(c) for
n ¼ 11, where the solid line shows that ðAÞ ¼ 0 is
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FIG. 3. Constant of motion in a topological lattice with the
Landau gauge. (a),(b) A CW chiral edge mode and the only zero
mode (ωμ ¼ 0) in the system with n ¼ 11, respectively. (c) Con-
stant of motion (A) for a pure CW chiral edge state (solid). Dashed
and dash-dotted lines show, respectively, its values when the zero
mode and the CCW chiral edge state is also excited. (d) Same as
(c) but for n ¼ 10 where a zero mode does not exist.
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a constant of motion for the evolution of a CWwave packet
(see the movie in Ref. [37]). We note that although the wave
packet consists of CW chiral edge modes that all have
a real frequency, its power (dotted line) still oscillates
with time as a consequence of non-Hermiciticy [2]. If we
also include the zero mode shown in Fig. 3(b) in the
temporal evolution, now (A) becomes nonzero [dashed line
in Fig. 3(b)] since it is both a particle and a hole as
mentioned before. Besides the zero mode, (A) also become
finite when we excite both chiral edge bands (dash-dotted
line), which consists of pairing particles and holes. The
same observations hold in the presence of symmetry-
preserving disorder, as we show in Ref. [37] by removing
the lattice site at the center of the top row. The universal
vanishment of (A) for the n ¼ 10 case is shown in Fig. 3(d).
In summary, we have revealed and analyzed previously

overlooked constants of motion in non-Hermitian systems,
using the extension of Noether’s theorem. Our systematic
study of the latter has led to the introduction of a
generalized symmetry, i.e., pseudochirality, which replaces
the standard symmetries in quantum mechanics defined by
a commutation relation. These results apply not only to
non-Hermitian systems with gain and loss but also those
with asymmetric hoppings [37]. Our observation provides a
suitable platform to investigate underlying symmetries
from the dynamics of non-Hermitian systems, independent
of whether such symmetries are spontaneously broken. It
may also find applications in identifying and improving
certain characteristics of topological systems, memory
storage and information processing, where dissipation
eliminates constants of motion found in Hermitian theories.
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