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We construct a dynamical decoupling protocol for accurately generating local and global symmetries in
general many-body systems. Multiple commuting and noncommuting symmetries can be created by means
of a self-similar-in-time (“polyfractal”) drive. The result is an effective Floquet Hamiltonian that remains
local and avoids heating over exponentially long times. This approach can be used to realize a wide variety
of quantum models, and nonequilibrium quantum phases.
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Introduction.—Much of the richness of the material
universe transpires due to a sequence of spontaneous
symmetry breaking events, going from the highest (most
symmetric) energy scales down to the lowest. By definition,
every equilibrium physical system has already found its
energetic low symmetry optimum; can it nevertheless be
repurposed to realize a different spontaneous symmetry
breaking pathway?
Sometimes this can be achieved by tuning thermo-

dynamic parameters. For instance, hydrostatic pressure
can restore more symmetric crystalline phases at a given
temperature, or magnetic fields can suppress superconduc-
tivity to reveal other competing instabilities. Such thermo-
dynamic knobs are, unfortunately, quite limited.
A more flexible approach is to reinstitute symmetries

dynamically. In nuclear magnetic resonance, echo tech-
niques have long been used to improve the coherence of
local moments by dynamically suppressing their coupling
to the environment. The Hahn echo [1] for instance reduces
inhomogeneous broadening, and the WAHUHA protocol
[2] can suppress anistropic dipole-dipole interactions.
However, the extension of these ideas to creating global
symmetries in many-body, interacting systems is less clear.
The main concern is that driving concomitantly generates
heating in these systems, which in turn suppresses intere-
sting collective phenomena.
In this Letter, we discuss dynamical protocols that can be

used to engineer multiple global or local symmetries, while
keeping heating at bay for exponentially long times. This
paves the way to creating novel symmetry broken and
topological phases [3,4] out of low symmetry templates.
Our work is informed by recent progress in under-

standing Floquet dynamics of many-body quantum sys-
tems. Crucially, it has been shown that the naive
expectation that driving should inevitably lead to heating
is not always correct—strong disorder [5–7] and/or appro-
priate drive frequency selection [8–12] can push heating to
exponentially long times. Further, in the context of time

crystals, it is already well appreciated that driving may lead
to the creation of Z2 symmetry whose spontaneous
rupturing gives rise to time-crystalline phase [12–14]. In
this Letter, we show how such ideas can be extended to
generate multiple local and global symmetries in the
effective Floquet Hamiltonian.
We demonstrate our protocol by considering the specific

case of how multiple Z2 symmetries can be generated in
spin systems. (Generalization to the Zn case with n > 2 is
straightforward.) The protocol involves injecting a finite set
of, say, ns unitary operators Xi, at specific times corre-
sponding to a fractal pattern, and in between regular unitary
evolution under the system’s physical Hamiltonian H. As
we show, such fractal application of Xi can be optimized in
the number of fractal layers nf, to result in an effective
Hamiltonian for which Xis are symmetries to an accuracy
that is nearly exponential in the drive frequency. This
sensitivity to the drive frequency allows for accurately
implementing global symmetries while requiring a drive
frequency that scales merely logarithmically with system
size N.
The approach is motivated by the following intuition.

The periodic application of Xi flips the sign of terms in H
that anticommute with Xi; thus, frequent application of Xi
leads to their cancellation after even number of drive
periods. The resulting effective Hamiltonian commutes
with Xi up to ∼OðT0Þ corrections, where T0 is the drive
period. As we show, these corrections can be further
suppressed by applying Xi periodically at intervals of
2T0; 4T0;… (see Fig. 1). (Note since X2

i ¼ 1, Xi will
effectively not be applied at some times.) Alternatively, one
may apply other generators Xjs at self-similar intervals
to generate additional symmetries. This work follows
through with the above intuition, and shows that for local
Hamiltonians, there exists an optimal number of fractal
layers nf which leads to superpolynomial (in drive-
frequency) suppression of symmetry-violating terms, while
heating occurs on a stretched-exponentially long timescale.
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This work has implications for engineering novel
Floquet Hamiltonians and nonequilibrium phases
[13,15–22], symmetry-protected topological phases [23]
and stabilization of quantum memories [24,25], among
others. When the engineered symmetries anticommute,
they give rise to a robust degeneracy structure in the entire
spectrum. This potentially could be exploited to engineer
topologically protected qubits manipulated by the same Xi
to high precision. We explore some of these ideas in a
companion paper [26]. These ideas should also easily
translate to experiments—particularly in setups exploring
nonequilibrium quantum phases, such as trapped ions [27],
NV centers [28], among others [29,30]—by introducing
multiple drives, akin to those already used, but operating at
multiples of the base frequency.
Finally, note that there is a precedent for fractal pulsing

in finite-sized systems [24,25]. However, as opposed to the
more general scheme we identify, these are system specific,
and rely on operator expansions that have null convergence
in the thermodynamic limit [8]. One may thus view this
work as a formal extension of dynamical decoupling
techniques to many-body systems. Below we describe
our results before providing detailed proofs and numerical
validation.
Description of protocol and main results.—We assume a

physical system described by a Hamiltonian H comprising
of a sum of local terms, with a local norm khk. We also
assume a set of ns unitaries Xi that further satisfy the
condition X2

i ¼ 1. These unitaries may themselves either
commute or anticommute with one another. The protocol
we study involves applying Xi at times

ti ¼ m2iþnsðj−1ÞT0; i ∈ ½1; ns�; j ∈ ½1; nf�; m ∈ Zþ

ð1Þ

amidst the regular Heisenberg evolution, where nf is the
number of “fractal layers” in the composite Floquet unitary;

see Fig. 1 for illustration. To illustrate by example, suppose
we have ns ¼ 2 unitaries, and apply these nf ¼ 1 times.
Then, UðT0Þ ¼ e−iHT0 ; Uð2T0Þ ¼ X1UðT0ÞX1UðT0Þ;
Uð4T0Þ ¼ X2Uð2T0ÞX2Uð2T0Þ. Subsequent time evolu-
tion at periods of T ≡ 2nfnsT0 ¼ 4T0 is given by the
repeated application of the Floquet unitary Uð4T0Þ. For
nf ¼ 2, the above recursion relations would be repeated for
another fractal layer: Uð8T0Þ ¼ X1Uð4T0ÞX1Uð4T0Þ;
Uð16T0Þ ¼ X2Uð8T0ÞX2Uð8T0Þ, and Uð16T0Þ would
subsequently serve as the Floquet unitary.
We now decompose H into terms which transform

differently under Xi:

H ¼
X
ϵ

Aϵ where ϵ ¼ ðϵ1;…; ϵnsÞ; ϵi ∈ f0; 1g;

XjAϵXj ¼ ð−1ÞϵjAϵ: ð2Þ

This decomposition is unique if Xis commute or anticom-
mute with one another, which we assume. With this
terminology, one may represent the Floquet unitary in
time-ordered notation as

UðT ≡ 2nfnsT0Þ ¼ T fe−i
R

T

0
dt
P

ϵ
AϵfϵðtÞg;

where fϵðtÞ ¼ �1 and
Z

2
nsnf T0

0

fϵðtÞ ¼ δ0;ϵ: ð3Þ

Here fϵðtÞ tracks times at which Xi is applied; this
corresponds to a sign change of terms Aϵ for which ϵi ¼ 1.
The integral over a complete period is zero except for f0.
Thus, in a time-averaged sense, the effective Hamiltonian is
A0 comprising of only terms even under all Xi.
Now, one may represent unitaryUðTÞ as an expansion in

the exponent

UðTÞ ¼ e−iT
P

∞
n¼0

TnΩn ; ð4Þ

with operators Ωn that can be arrived at using the Magnus
expansion, or, in this case, a repeated application of the
BCH formula; the first term is simply the time-averaged
Hamiltonian Ω0 ¼ A0.
In general, the operator Ωn involves n nested commu-

tators of the local operators Aϵ. Thus, if the local terms
comprising Aϵ involve at most k sites, Ωn can be repre-
sented as a sum of terms comprising at most nk sites.
Finally, the series expansion is only useful if we can
truncate it at some order and effectively approximate the
unitary dynamics; we define the approximate Hamiltonian

Hðn0Þ
F ¼

X
0≤n≤n0

TnΩn: ð5Þ

Our main results concern the properties of the Floquet
unitary UðTÞ, and the associated effective Floquet
Hamiltonian Hðn0Þ

F . The first part of our results are directly

FIG. 1. Illustration of the protocol for ns ¼ 2 unitaries X1, X2.
The two unitaries are applied in a self-similar fashion in time. The
Floquet unitary UFðT ≡ 2nfnsT0Þ at fractal layer nf, is the
product of operators applied at the times indicated, from bottom
up. Note also that X2

i ¼ 1, and Xis either commute or anti-
commute with one another. Thus, the net operator applied at any
time step is either X1; X2; X1X2, or the identity.
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adapted from the results of Refs. [8,10,11,31], which state
that the difference between the exact reduced density
matrix of a region of size Nρ and that obtained by evolving
it withHðn0Þ

F is bounded in norm by cNρ2
−n0, for some finite

constant c. Here n0 ∼ 1=ðTkhkÞ≡ ω=khk ≫ 1 scales lin-
early with the effective drive frequency ω ¼ 1=ð2nfnsT0Þ.
The norm of this error sets the inverse of the timescale up to
whichHðn0Þ

F provides a good description of the dynamics of
local operators (alternatively, the timescale for heating)—
crucially, this timescale grows exponentially with the drive
frequency. For global operators Xi with finite norm, but
also for Hðn0Þ

F itself, Nρ is the system size N, but the error
can still be made small by scaling ωmerely logarithmically
with system size. Hereon, we will assume such frequency
scaling.
Having established the conditions under which Hðn0Þ

F
faithfully describes the time evolution of Xi, we seek
to establish a bound on the norm of terms in Hðn0Þ

F that
do not commute with Xi. Defining the timescale
τX ≈minif1=k½Hðn0Þ

F ; Xi�kg, which sets the shortest time-
scale at which unitaries Xi relax, we find

τX ≥
1

N
ðc12nsnfT0khknfÞ−nf ;

τH ≥
1

N
ec2

1
T0khk·

1

2
nsnf ; ð6Þ

where c1, c2 are Oð1Þ combinatorial constants. τH is a
bound on the time for which global operators such as
energy are accurately described by Hðn0Þ

F [8,10]. Note that
τX initially increases with the number of fractal layers nf
but eventually begins to decrease again. There is therefore
an optimal nf for which Xi become effective symmetries.
Note also that nf cannot be made arbitrary large since its
increase rapidly decreases the thermalization timescale τH.
We now describe how to optimize nf to maximize τX, τH.

First, note that to maintain exponential dependence on the
reference drive frequency ω0 ≡ 1=T0, nf must scale at most
logarithmically in the small parameter T0khk. This implies
nf ¼ ðx=nsÞlog2½1=ðT0khkÞ� with 0 < x < 1. Plugging
this into the result for τX, we find

τX ≥
1

N

�
c02 ·

jlog2ðT0khkÞj
T0khk

�ð1−xÞ x
ns
log2ð 1

T0khkÞ;

τH ≥
1

N
e
c2

1

ðT0khkÞ1−x ; for some 0 < x < 1: ð7Þ

where c02 is an Oð1Þ constant. Thus, we can vary ω0 to
control τH with (stretched-) exponential sensitivity, and
τX as a power law that can be made arbitrarily large.
Consequently, a very slow increase of ω0 with system size
N is sufficient to cancel the prefactor of 1=N in both
τX and τH.
Finally, we note that Hðn0Þ

F is quasilocal in the sense that
the amplitude of terms decays exponentially with the

spatial range [8,10]. In general, this operator may be hard
to evaluate exactly, but it can be approximated by

Hðn0Þ
F ≈Hð0Þ

F ¼ A0; ð8Þ

where A0 commutes with all Xi by construction. Since it
captures the time evolution of local operators and, impor-
tantly, also reflects the global symmetry properties of
Hðn0Þ

F , it is a good approximation to the effective Floquet
Hamiltonian for times t≲min ðτX; τHÞ.
The design of the protocol, which is crucial to the bound

obtained in the first part of Eq. (6), its proof, and the result
of Eq. (7) that times τX and τH are almost exponentially
sensitive to the base drive frequency are the central results
of this work.
Fractal driving with a single unitary X.—We now derive

the bound in the first part of Eq. (6) for the case (ns ¼ 1) of
a single unitary X1 ≡ X. The derivation of the result will
also help the reader intuit the logic behind fractal driving.
Using the terminology introduced above, the

Hamiltonian is composed of two (kinds of) terms:
H ¼ A0 þ A1, where A0ð1Þ is even (odd) under X. In this
case, fractal driving can be described by the simple
recurrence relations

Uð2nT0Þ ¼ X ·Uð2n−1T0ÞX ·Uð2n−1T0Þ; ∀ n ≥ 1; ð9Þ

with UðT0Þ ¼ e−iHT0 . At the first stage, this implies

Uð2T0Þ ¼ e−iT0ðA0−A1Þe−iT0ðA0þA1Þ ≡ e−iT
ð1ÞðAð1Þ

0
þAð1Þ

1
Þ; ð10Þ

where we define Tð1Þ ≡ 2T0, and Að1Þ
0 and Að1Þ

1 are the new
effective terms that are even and odd, respectively, under X.
The BCH formula then yields

Að1Þ
0 ¼ A0 þOðT2

0Þ;
Að1Þ
1 ¼ −i

T0

2
½A0; A1� þOðT2

0Þ: ð11Þ

After nf fractal layers, this implies

TðnfÞ ¼ 2nfT0; A
ðnfÞ
0 ¼ A0;

A
ðnfÞ
1 ¼

�
−i2

nf−3
2 T0

�
nf ½A0;…; ½A0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

nf

; A1�…� þOðTnfþ1

0 Þ:

ð12Þ

Importantly, terms in Hðn0Þ
F that anticommute with X

appear first at OðTnf
0 Þ. These terms are a subset of all

terms that appear at OðTnfÞ in the expansion of the Floquet
Hamiltonian, Eq. (5). Their norm is therefore bounded by
TnfkΩnfk. Further, the norm of all terms that may
anticommute with X can be bounded by

Pn0
n¼nf T

nkΩnk.
We note from Ref. [10], that
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kΩnkTn ≤ N
ðcTkhkÞnn!
ðnþ 1Þ2 ≤ NðcTkhknÞn ð13Þ

for some Oð1Þ constant c. Using the above, we can
bound the ratio kΩnþ1k=kΩnk < 1=2 ∀ n ≤ n0, if we
set n0 ¼ 1=ð2cTkhkÞ. This finally implies

k½Hðn0Þ
F ; X�k ≤ 2TnfkΩnfk: ð14Þ

Equations (14) and (13) give the result in Eq. (6) for ns ¼ 1.
Polyfractal driving with multiple unitaries.—We now

generalize to the case ns > 1. As before, we can examine
the flow of Aϵ after each fractal layer, that is, at times 2nnsT0

for integer n. (Recall, a fractal layer corresponds to the
application of each Xi once at progressively doubled
periods.)
Let us examine the recursion relations for ns ¼ 2

to illustrate by example. The Hamiltonian in this case is
H ¼ A00 þ A01 þ A10 þ A11, where terms A01 and A10

are odd under X1 and X2 only, respectively, while
A11 is odd under both. Uð4T0Þ is calculated using the
BCH expansion twice. Representing it as Uð4T0Þ ¼
e−iT

ð1ÞðAð1Þ
00
þAð1Þ

01
þAð1Þ

10
þAð1Þ

11
Þ, where Tð1Þ ¼ 4T0, we find to

OðT2
0Þ

Að1Þ
00 ¼ A00; Að1Þ

01 ¼ −iT0½A00; A01�;
Að1Þ
10 ¼ −i

T0

2
ð½A00; A10� þ ½A01; A11�Þ;

Að1Þ
11 ¼ −iT0

�
−i

T0

2

�
½A00; ½A00; A11� þ ½A01; A10��

þ iT0

�
−i

T0

2

�
½A01; ½A00; A10� þ ½A01; A11��: ð15Þ

Note that terms which are odd under just one symmetry
are canceled to OðT0Þ, while terms odd under both X1, X2

are canceled to higher order. Similar conclusions apply for
the general case of ns ≥ 2.
After nf fractal layers, symmetry-violating terms appear

at order OðTnf
0 Þ or higher. (The terms that are odd under

just one symmetry appear at the lowest order.) To estimate
the norm of these terms, we can apply the same arguments
for the case ns ¼ 1, arriving at the results of Eq. (6). This
completes the proof.
Numerical results.—We now provide numerical simu-

lations to illustrate the above results. We consider a short-
ranged spin-1=2 chain of length L, with open boundary
conditions. In the majorana representation, the Hamiltonian
reads

H ¼
X
n;k≤4

e−kþ1ð−iγnγnþkÞ þ Vγnγnþ1γnþ2γnþ3; ð16Þ

where for n odd/even, γn ¼
Q

j<n σ
z
jσ

x=y
n . H has parity

symmetry PZ ¼ Q
n

ffiffi
i

p
γn; we work in the sector PZ ¼ 1.

One can check that driving with PX ¼ Q
j σ

x
j ¼Q

n iγ4n−2γ4n−1 suppresses even nearest neighbor majorana
bonds and yields a Kitaev chain with terminal majorana
zero modes. However, the quality (energy splitting) of the
majoranas is not equivalent to the accuracy of PX sym-
metry; for details see the Supplemental Material [32].
To illustrate the effectiveness of the protocol in creating

multiple global symmetries, we drive the system with PX
and PZ2 ¼

Q
j σ

z
2j ¼

Q
n iγ4n−3γ4n−2. These operators

(anti)commute for L ¼ ð4nþ 2Þ4n for integer n. For
L ¼ 4nþ 2, the operators satisfy the Pauli algebra which
leads to a doubly-degenerate spectrum.
To quantify the accuracy of the generated sym-

metries, we evaluate “decoherences”— aðtÞ ¼ 1−
Tr½PaðtÞPa�=2L−1 of relevant operators Pa. aðt ¼ 0Þ ¼ 0
and remains zero for perfectly conserved Pa, while
it relaxes to 1 for nonconserved operators. We study
Pa ¼ fPX; PZ2; σxL=2σ

x
L=2þ1g. The first two measure the

conservation of PX; PZ2, and should yield xðtÞ ¼ z2ðtÞ ¼ 0
in case they are perfect symmetry generators of the Floquet
dynamics, while xlðtÞ measures the relaxation of a local
operator that is not expected to be conserved. Finally, we
compute ϵðtÞ ¼ hA0ðtÞ − A0ð0Þiwhere the average is taken
with respect to the ground state of A0 [the part of H that
commutes with PX and PZ2, see Eq. (8)]. ϵðtÞ thus
characterizes heating in the system.
The numerical results of Fig. 2(a) generically exhibit

rapid initial relaxation on microscopic timescales, before
transitioning to a long-lived prethermal state. This is seen
via the initial rapid loss of coherence of PZ2, PX and an
increase in the energy ϵðtÞ, before plateauing at a fixed
value much smaller than 1. The decoherence xlðtÞ on the
other hand rapidly approaches 1, as expected. Long-term
values of the decoherences, z2; x̄ are seen to improve as
fractal layers are increased from nf ¼ 1, degrading
subsequently for larger nf—see Fig. 2(b)—illustrating
the existence of an optimal number of fractal layers for
symmetry creation. Figure 2(c) illustrates the sensitivity of
long-time coherences in the optimal protocol (over nf)
to T0, as expected. Finally, in Fig. 2(d), we confirm
our expectations that the eigenspetrum of the Floquet
unitary is doubly degenerate for L ¼ 6 and not for
L ¼ 8.
An interesting aspect of the numerical results is that

unlike our expectations, we do not observe heating away
from the “prethermal plateau” at times longer than τX
(Eq. (7). However, the plateau values of x̄; z2 appear to
scale with 1=τX. In fact, we observe relaxation (to 1) only
when driving at frequencies smaller than the microscopic
scale, or for local operators not designed to be conserved.
Whether this is a limitation of the small system sizes, a
feature of the particular model that we considered, or an
indication that our protocol works generally better than the
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conservative estimate for heating that we made, deserves
further study.
Summary and outlook.—We have introduced a

novel strong-driving protocol for engineering Floquet
Hamiltonians, by creating new local and global sym-
metries. It may be viewed as an extension of dynamical
decoupling techniques to local many-body Hamiltonians.
While we describe here creation of Z2 symmetry gener-
ators, the results are easily generalized to Zn>2 by applying
the individual symmetry generators in sets of n instead of
twice, as in Eq. (9).
The symmetries can be used to engender a variety of

novel Hamiltonians and dynamical phenomena. Creation of
topological phases, and quantum memory stabilization
using such schemes are explored in Ref. [26]. While we
have focused on the quasistationary Hamiltonian HF, the
dynamics of the system inside the Floqut period can be
subject to interesting dynamical phenomena and deserves
further attention.
Experiments probing nonequilibrium phenomena in

driven systems in a variety of setups including Nitrogen-
vacancy centers [28], ion traps [27], cold atoms [29,30]
among others would be the natural setup to explore
these ideas.
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driven by PX; PZ2. Initial relaxation on microscopic timescales gives way to a long prethermal regime. (b) The long-time values x̄; z̄2 of
operators PX; PZ2 depend in a nonmonotonic way on fractal layers nf, with optimal nf ¼ 3 in this instance. For (a),(b), T0 ¼ 0.01.
(c) The long-time relaxation is strongly suppressed with increasing frequency 1=T0. Black dotted lines are theoretical curves of the form
fðT0Þ ∼ faT0=½log2ðaT0Þ�gblog2ðaT0Þ [for a ¼ 1, b ¼ 0.43 (0.5 for inset)], as for 1=τX in Eq. (7). (d) PX; PZ2 (anti)commute for L ¼ ð6Þ8
yielding a doubly degenerate spectrum for L ¼ 6 but not for L ¼ 8.
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