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Quantum hypothesis testing is a central task in the entire field of quantum information theory.
Understanding its ultimate limits will give insight into a wide range of quantum protocols and applications,
from sensing to communication. Although the limits of hypothesis testing between quantum states have
been completely clarified by the pioneering works of Helstrom in the 1970s, the more difficult problem of
hypothesis testing with quantum channels, i.e., channel discrimination, is less understood. This is mainly
due to the complications coming from the use of input entanglement and the possibility of employing
adaptive strategies. In this Letter, we establish a lower limit for the ultimate error probability affecting the
discrimination of an arbitrary number of quantum channels. We also show that this lower bound is
achievable when the channels have certain symmetries. As an example, we apply our results to the problem
of channel position finding, where the goal is to identify the location of a target channel among multiple
background channels. In this general setting, we find that the use of entanglement offers a great advantage
over strategies without entanglement, with nontrivial implications for data readout, target detection, and
quantum spectroscopy.
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Hypothesis testing is a fundamental method of statistical
inference which plays a central role in both classical and
quantum information theory. Since the seminal works by
Helstrom [1], quantum hypothesis testing [1–4] has been
greatly advanced for the binary case, namely for the
statistical discrimination between two quantum states or
two quantum channels. Quantum channel discrimination
(QCD) [5–9] aims at discriminating between different
physical processes, modeled as quantum channels and
arbitrarily chosen from some known ensemble. Various
protocols have demonstrated the advantages of using
entanglement in binary QCD, for example quantum
illumination [10–14] and quantum reading [15]. It is also
known that all resources in any convex resource theory [16]
are useful in binary problems of QCD.
While it is clear that entanglement may give an

advantage in some scenarios, the ultimate limit of QCD
is far from being understood. The first difficulty results
from the fact that solving this limit requires a double
optimization, where both input states and output measure-
ments need to be optimized. The second complication
comes from the possibility of adaptive strategies, which

may strictly outperform nonadaptive ones [17]. So far only
special cases have been considered. For unitaries and
certain channels, a finite number of probings allow perfect
discrimination [18–20]. For binary discrimination of
channels with equal priors, the ultimate adaptive perform-
ance can also be found or bounded [21,22].
In this Letter, we are finally able to address the most

general scenario. We establish the ultimate limits for the
adaptive discrimination of an arbitrary number of finite-
dimensional quantum channels. More precisely, we provide
a general bound to the optimal error probability affecting
this general multiary discrimination problem, and we also
show relevant cases where this bound is achievable. In fact,
for a special class of channels with the property of joint
teleportation covariance (telecovariance) [9,22], our bound
is tight and achieved nonadaptively by using maximally
entangled inputs. Furthermore, when the ensemble of
channels possesses the geometric uniform symmetry
(GUS) [23], our formulas can be greatly simplified.
As an application, we study the ultimate minimum error

probability for the problem of channel position finding
(CPF), where the position of a target channel has to be
identified among an array of m cells, with the remaining
m − 1 cells containing copies of a background channel.
This basic problem has implications for various tasks of
quantum sensing as discussed in Ref. [24]. It is here studied
considering ensembles of quantum erasure channels
(QECs), quantum depolarizing channels (QDCs) and qubit
amplitude damping channels (QADCs). In particular, for
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QDCs, we show that the use of input entanglement strictly
outperforms nonentangled strategies.
Preliminaries.—Before addressing QCD, let us summarize

the case of state discrimination. The minimum “Helstrom”
error probability affecting the discrimination of m states
fρngm−1

n¼0 with priors fpngm−1
n¼0 is given by

PHðfρn; pngÞ ¼ 1 − maxP
n

Πn¼I

X

n

pnTrðρnΠnÞ; ð1Þ

where the positive-valued operator measure (POVM)
element Πn corresponds to the hypothesis that the state is
ρn. In the binary case with equal priors, it reduces to [1]
PH ¼ ð1 − kρ1 − ρ2k=2Þ=2, where kAk ¼ tr

ffiffiffiffiffiffiffiffiffi
A†A

p
is the

one-norm. Since evaluating PH is often challenging, we will
resort to various bounds [25–33]. To proceed with our study
of QCD, we give a continuity bound for PH as stated in the
following lemma (proof in [33]).
Lemma 1.—Consider a set of states fρ0ngm−1

n¼0 close
to fρngm−1

n¼0 in the sense that kρn − ρ0nk ≤ δn for
0 ≤ n ≤ m − 1. We lower bound the Helstrom limit as

PHðfρ0n; pngÞ ≥ PHðfρn; pngÞ −
1

2

X
pnδn: ð2Þ

Adaptive protocols, simulation, and stretching.—With
the continuity bound in hand, we now introduce the most
general protocol for QCD and its reduction to state
discrimination. A general u-round adaptive protocol
for multiple channel discrimination is depicted in
Fig. 1(a). The protocol is allowed to access an unknown
d-dimensional channel E for u times, where the unknown
channel E is fixed but chosen from the ensemble
fEn; pngm−1

n¼0 . The unlimited entanglement between all
systems involved allows one to push all measurements
to the final output ρE;u. In each round, a subsystem
Sk; 1 ≤ k ≤ u, is sent through the channel E and the output
S0k is collected. Our goal is to lower bound the ultimate error
probability Pu of the above protocol.

To simplify the structure of the protocol, we employ
channel simulation [37–39] and protocol stretching [38],
originally devised for quantum communications. As
depicted in Fig. 1(b), we consider an approximation EM

of the finite-dimensional channel E by applying a
universal (trace-preserving) teleportation operation T M to
M ≥ 1 copies of the Choi matrix ρE ¼ ðE ⊗ IÞζ,
where ζ ≔

P
d−1
l¼0 jl;li=

ffiffiffi
d

p
is a maximally entangled

state of dimension d. In general, T M can be chosen as
port-based teleportation (PBT) [40]. The precision of
channel simulation is quantified by ΔE;M ≔ kE − EMk⋄
where kAk⋄ ¼ supρkA ⊗ IðρÞk is the diamond norm
[5,41]. For the simulation of an arbitrary finite-dimensional
channel via PBT, we may write [[21] Lemma 2]

ΔE;M ≤ δM;d ≔ 2dðd − 1ÞM−1; ð3Þ

which is valid for any number of portsM ≥ 1 and any input
dimension d ≥ 2 for the channel [42].
The error in the channel simulation propagates to the

output of the protocol. Using the triangle inequality, we can
bound the trace distance between the output state ρE;u of the
actual protocol and the output state ρ̃E;u of the simulated
protocol as follows

kρE;u − ρ̃E;uk ≤ uΔE;M: ð4Þ

The final step is protocol stretching [21,38]. As depicted in
Fig. 1(c), this is a reorganization of the simulated protocol
into an equivalent block protocol, so that the approximate
output state ρ̃E;u is decomposed as ρ̃E;u ¼ Λðρ⊗uM

E Þ for a
trace-preserving quantum operation Λ. Combining this
with Eq. (4) we then write

kρE;u − Λðρ⊗uM
E Þk ≤ uΔE;M: ð5Þ

Ultimate bounds.—Combining Lemma 1 with Eq. (5),
we derive the main result of our work (proof in [33]).

FIG. 1. Schematics of (a) a general adaptive protocol. The inputs S and I are quantum registers in an arbitrary state. In the (k − 1)th
round, a subsystem Sk−1 probes the channel E. A quantum operation Λk−1 is performed to process the received subsystem S0k−1 and
prepare the next probe subsystem Sk. After u uses, the final decision is made based on the measurement of the output state ρE;u.
(b) Channel simulation. A general protocol over channel E is replaced by a protocol over an approximate channel EM , consisting of a
teleportation operation T M applied to M copies of the Choi matrix ρE . (c) Protocol stretching. Starting from the simulated protocol in
(b), all the u copies of the resource state ρ⊗M

E are stretched back in time and all the quantum operations (together with the registers
S and I) are collapsed into a single trace-preserving quantum operation Λ that produces ρ̃E;u. (d) Channel position finding with m ¼ 3
multichannels E0, E1, E2, each acting on three subsystems S0, S1, S2. Here ΦðTÞ and ΦðBÞ represent target and background channels,
respectively (see also Ref. [24]).
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Theorem 1.—Consider arbitrary m ≥ 2 d-dimensional
quantum channels fEngm−1

n¼0 with prior probabilities
fpngm−1

n¼0 . The minimum error probability Pu for their
u-round adaptive discrimination satisfies

Pu ≥ Pu;LB ≔ PHðfρ⊗uM
En

; pngÞ − uΔ̄M=2; ð6Þ

where the average simulation error Δ̄M ¼ P
n pnΔEn;M can

be replaced by the uniform error δM;d of Eq. (3).
Since the bound is valid for anyM ≥ 1, its tightest value

is achieved by maximizing over M. Remarkably, the
difficult problem of adaptive multi-channel discrimination
has been reduced to the discrimination of an ensemble of
Choi matrices. However, in general, the computation of the
Helstrom limit PHðfρ⊗uM

En
; pngÞ may still be challenging

and, for this reason, we may resort to further bounds. In
particular, by using bounds from Bures’s fidelity
Fðρ; σÞ ≔ tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ

p
σ

ffiffiffi
ρ

pp
, we can obtain a lower bound that

is easier to evaluate [33]

Pu ≥ PF
u;LB ¼

X

k0>k

pk0pkF2uMðρEk0 ; ρEkÞ − uΔ̄M=2: ð7Þ

Below, we consider symmetric cases where the bound of
Theorem 1 can be greatly simplified.
Ensembles with symmetries.—The general problem of

adaptive multichannel discrimination can be further
simplified if the ensemble possesses certain symmetries.
The first to consider is joint telecovariance. A quantum
channel E is telecovariant [38] when, for any tele-
portation unitary U (e.g., Pauli operator), we may
write EðUρU†Þ ¼ VEðρÞV† for another generally different
unitary V (See [43–45] for general covariance.). Then, an
ensemble of channels fEkg is called jointly telecovariant
[9,22], when we may write the condition of telecovariance
for all the elements of the ensemble and the output unitary
V does not depend on the label k, i.e., it is universal for the
ensemble.
For an ensemble of jointly telecovariant channels, we may

rewrite the previous universal simulation by choosing T M as
the standard teleportation [46] applied to a single Choi
matrix (M ¼ 1). Furthermore, this simulation is perfect,
meaning that we have ΔE;1 ¼ 0 [38]. As a result, Theorem 1
reduces to Pu;LB ¼ PHðfρ⊗u

En
; pngÞ. Furthermore, this lower

bound is achievable (Pu ¼ Pu;LB) by probing the channels
with u copies of the maximally entangled state ζ, which
also means that adaptive strategies are not needed for
these channels. We have therefore automatically proved
the following, which is a generalization of Ref. [[22]
Theorem 3] from binary to multiary channel discrimination.
Corollary 1.—Consider arbitrary m ≥ 2 jointly

telecovariant channels fEngm−1
n¼0 with prior probabilities

fpngm−1
n¼0 . The minimum error probability for their

u-round adaptive discrimination equals the Helstrom limit
computed over their Choi matrices

Pu ¼ PHðfρ⊗u
En

; pngÞ: ð8Þ

This is achievable by a nonadaptive entanglement-based
strategy where u copies of a maximally entangled state ζ
are sent through the extended channel En ⊗ I .
Examples of jointly telecovariant channels are QECs and

all Pauli channels, therefore including QDCs. By contrast,
QADCs do not belong to this family.
We can perform another relevant simplification when

the ensemble possesses GUS [23]; i.e., it has equal priors
pn ¼ 1=m and the channels satisfy En ¼ SnE0S†n, where
the unitary Sm equals identity. In this case, the Choi
matrices ρ⊗uM

En
also have GUS with extended symmetry

operators SuM ¼ S⊗uM. Then the optimal POVM fΠngm−1
n¼0

for discriminating a GUS ensemble of states has the same
type of symmetry, i.e., Πn ¼ SnuMΠ0S

†n
uM [23,47]. As a

result, the lower bound in Theorem 1 takes the form

Pu;LB ¼ 1 −
1

2
uΔE0;M −max

Π0

Tr½Π0ρ
⊗uM
E0

�; ð9Þ

where the maximization is constrained by POVM
normalization condition. Finally, if the channel ensemble
has both the properties of GUS and joint telecovariance,
then we may write the ultimate achievable bound

Pu ¼ 1 −max
Π0

Tr½Π0ρ
⊗u
E0

�: ð10Þ

In the following, we consider CPF, which has the property
of GUS as a natural symmetry.
Channel position finding.—An important case where we

have GUS is the problem of CPF [see Fig. 1(d) for a
schematic]. Consider an array of m cells, each containing a
channel acting on a dS-dimensional subsystem Sk. The goal
is to find the position n of a target channel ΦðTÞ, knowing
that all the other cells contain copies of a background
channel ΦðBÞ. Formally, we consider equal-prior discrimi-
nation of m multichannels fEngm−1

n¼0 , each expressed by

En ¼ ð⊗k≠n Φ
ðBÞ
Sk

Þ ⊗ ΦðTÞ
Sn

: ð11Þ

By taking m maximally entangled states at the input ζ⊗m,
we define the global Choi matrix of the multichannel
above, which has the following form

ρEn ¼ ½⊗k≠n ðρΦðBÞ ÞSkIk � ⊗ ðρΦðTÞ ÞSnIn : ð12Þ

From the multichannel En we can derive an M-port PBT
simulation EM

n by replacing each individual channel
ΦðB=TÞ with its M-port simulation. Correspondingly, the
simulation error affecting the multichannel is in terms of
the errors associated to the simulation of the individual
channels, i.e., ΔEn;M ¼ ðm − 1ÞΔΦðBÞ;M þ ΔΦðTÞ;M [33].
Because this expression is the same for any n, the average
simulation error is simply Δ̄M ¼ P

n pnΔEn;M ¼ ΔE0;M.
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Furthermore, from Eq. (3) we have ΔΦðlÞ;M ≤ δM;dS ,
and we can write the simpler upper bound Δ̄M ≤
mδM;dS ∼md2S=M. The simulation error of the CPF
problem can be used in previous equations. In particular,
we can use it in Eq. (7), which here takes the form

Pu ≥ PF
u;LB ¼ m − 1

2m
F4uM
ΦðBÞ;ΦðTÞ − uΔ̄M=2; ð13Þ

where FΦðBÞ;ΦðTÞ is the fidelity between the Choi matrices of
the target and background channels [48].
In order to show further applications of our theory, below

we consider three families of channels: QECs, QDCs, and
QADCs. The first two are jointly telecovariant, so that our
Corollary 1 and Eq. (10) can be applied.
Discrimination of erasure and depolarizing channels.—

Let us study the multiary discrimination of QECs and
QDCs. Recall that the d-dimensional QEC with erasure
probability q can be written as EqðρÞ ¼ qjeihej þ ð1 − qÞρ,
where ρ is the input state and jeihej is a state living
in an orthogonal space. The d-dimensional QDC
with depolarizing probability q takes instead the form
DqðρÞ ¼ qId þ ð1 − qÞρ, where Id ¼ d−1I is the fully
mixed state. These two types of channels can be treated
compactly by exploiting the formalism of the orthogonal
replacement channel. This is explained in detail in [33],
where we also show that, for the special case of binary
discrimination between QECs (or QDCs), we find exact
analytical solutions for the ultimate error probability.
Consider the multiary discrimination problem of CPF

specified in Eq. (11). Here the background channel ΦðBÞ
and the target channel ΦðTÞ are chosen to be QECs
(or QDCs) with probabilities qB and qT . For m channels
and u uses, we define the function

humðqB; qTÞ ≔ 1 −
1

m

X

x∈f0;1gum
½qw⋆

T ð1 − qTÞu−w⋆

×qkxk−w
⋆

B ð1 − qBÞðm−1Þu−ðkxk−w⋆Þ�; ð14Þ

where w⋆ ¼ maxlkxlk for qT ≥ qB, while w⋆ ¼ minlkxlk
[49] for qT < qB. Here xl (with 0 ≤ l ≤ m − 1) is the
ð1þ luÞth to ½ðlþ 1Þu�th components of the vector x.
Note that humðqB; qTÞ ¼ humð1 − qB; 1 − qTÞ. Using this
function, we compute Pu in Eq. (10) and, when u ¼ 1,
the summation can be simplified analytically [33].
For CPF with QECsΦðBÞ ¼ EqB andΦ

ðTÞ ¼ EqT , we find
the ultimate error probability

PQEC
u ¼ humðqB; qTÞ: ð15Þ

In this case there is no entanglement advantage, since
we obtain the same performance by sending u copies
of an optimal pure state ϕ⊗m through En in a non-
adaptive fashion. For CPF with QDCs ΦðBÞ ¼ DqB and
ΦðTÞ ¼ DqT , we compute the ultimate error probability

PQDC
u ¼ hum½ð1 − d−2ÞqT; ð1 − d−2ÞqB�: ð16Þ

In this case, there is instead a clear advantage in using
entanglement, since the performance of an optimal
pure state ϕ⊗m is given by Eq. (16) with the replacement
d−2 → d−1 [33]. Figure 2 shows the gap between the
entangled and nonentangled strategy which widens as
the difference jqB − qT j increases, and as the number
of rounds u increases. For one-shot discrimination
(u ¼ 1) of a completely depolarizing channel qT ¼ 1

among identity channels (qB ¼ 0), we may write PQDC
1 ¼

ðm − 1Þ=md2 [33].
Discrimination of amplitude damping channels.—A

QADC Aq with damping probability q has Kraus decomp-

osition AqðρÞ ¼
P

i¼0;1KiρK
†
i , with operators K0 ≔

j0ih0j þ ffiffiffiffiffiffiffiffiffiffiffi
1 − q

p j1ih1j and K1 ≔
ffiffiffi
q

p j0ih1j. It is not
telecovariant and its PBT simulation has nonzero error
ΔAq;M ¼ ξM½ð1 − qÞ=2þ ffiffiffiffiffiffiffiffiffiffiffi

1 − q
p �, where ξM is the

constant given in Ref. [[21] Eq. (11)]. While the binary
discrimination between two QADCs has been treated
in the literature [21] (see [33] for further results on
receiver designs and pretty-good measurement (PGM)
[25–27]), little is known in the setting of multiary
discrimination.
Consider the multi-ary discrimination problem of CPF

specified in Eq. (11), with background ΦðBÞ ¼ AqB and
target ΦðTÞ ¼ AqT . We compute the lower bound in
Eq. (13) here taking the form

Pu ≥ PF
u;LB ¼ m − 1

2m
F4uM − uΔ̄M=2; ð17Þ

where F ≔ ½1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − qBÞð1 − qTÞ
p þ ffiffiffiffiffiffiffiffiffiffi

qBqT
p �=2 and

Δ̄M ¼ ðm − 1ÞΔAqB
;M þ ΔAqT

;M. By optimizing over M,
we derive its tightest form PF⋆

u;LB ¼ maxMPF
u;LB. As a

comparison, we consider a nonadaptive scheme, where u
copies of the maximally entangled state ζ⊗m probe En.
Correspondingly, the Helstrom limit computed on the
ensemble of output Choi matrices fρ⊗u

En
g is bounded as [33]

FIG. 2. Channel position finding with QDCs ΦðBÞ ¼ DqB and
ΦðTÞ ¼ DqT . We consider m ¼ 5, d ¼ 100, and qB − qT ¼ 0.5,
0.9, 0.99, 0.999 from top to bottom. We compare the ultimate
(entanglement-based) performance PQDC

u of Eq. (16) (red curves)
with the optimal classical strategy based on unentangled inputs
(black curves). (a) u ¼ 1, (b) u ¼ 3. In all panels, the vertical
dashed lines are the maximum values that qT can take, because
for those values we have qB ¼ 1.
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m − 1

2m
F4u ≤ PHðfρ⊗u

En
; 1=mgÞ ≤ PPGM

E ; ð18Þ

where PPGM
E is the performance achievable via a PGM at the

output [25–27]. Figure 3 shows a gap between the ultimate
lower bound PF⋆

u;LB and the nonadaptive performance.
Further investigation is needed to establish if this gap is
effectively due to adaptiveness.
Conclusions.—In this work, we established the ultimate

limits for the minimum error probability affecting the
(generally adaptive) statistical discrimination of an arbi-
trary m ≥ 2 number of finite-dimensional quantum
channels. We find remarkable simplifications in the
presence of symmetries, with our bound becoming exactly
achievable when the channel ensemble is jointly tele-
covariant. Our theory allows us to find the ultimate
performances achievable in the fundamental m-ary
discrimination problem of CPF, considering various types
of channels. In particular, for CPF with depolarizing
channels, we show that the use of entanglement greatly
outperforms the performance of any classical strategy.
Note that CPF can be translated into various applica-

tions, including readout of memories, radar scanning and
absorbance spectroscopy. For instance, CPF may model the
readout process from a digital memory where information
is encoded in the position of a target cell within a block. In
the frequency domain, this is equivalent to finding the
absorbance line within a spectrum. A possible future
direction is developing our theory in the setting of
unambiguous hypothesis testing, suitably extending
Refs. [4,50–53] to m-ary channel discrimination.
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