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Weak-value amplification (WVA) is a metrological protocol that amplifies ultrasmall physical effects.
However, the amplified outcomes necessarily occur with highly suppressed probabilities, leading to the
extensive debate on whether the overall measurement precision is improved in comparison to that of
conventional measurement (CM). Here, we experimentally demonstrate the unambiguous advantages of
WVA that overcome practical limitations including noise and saturation of photodetection and maintain a
shot-noise-scaling precision for a large range of input light intensity well beyond the dynamic range of the
photodetector. The precision achieved by WVA is 6 times higher than that of CM in our setup. Our results
clear the way for the widespread use of WVA in applications involving the measurement of small signals
including precision metrology and commercial sensors.
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Introduction.—The precision of optical metrology and
sensing is ultimately determined by the quantum fluctua-
tions of light. Quantum-optical states (e.g., N00N states
and squeezed states) can improve the precision of param-
eter estimation from the shot-noise limit (SNL) [1] to the
Heisenberg limit (HL) [2,3]. However, such quantum states
are very vulnerable to experimental imperfections and are
difficult to prepare, especially for large photon numbers
[4,5]. Instead, a typical approach to enhance precision is to
increase the average photon number n̄ of the coherent state.
In principle, this scheme can attain a precision at SNL,
which scales as 1=

ffiffiffī
n

p
. In practice, this scaling is a

challenge due to the ubiquitous noise of detectors [6]. In
particular, the saturation of detectors sets a tight limit on the
intensity of the detected light, beyond which the enhance-
ment in the measurement precision by increasing the light
intensity is reduced or even eliminated.
Weak-value amplification (WVA), deployed to amplify

miniscule physical effects through postselection [7–11],
has the potential for enhancing measurement sensitivity and
overcoming certain environmental disturbances [12–18].
Yet to date most of works demonstrating the metrological
advantages of WVA are attained under theoretical assump-
tions and experimental conditions different from those of
conventional measurement (CM) [19–29]. Identifying the
unambiguous advantage of WVA is still under exploration
[30]. With ideal setups, WVA can achieve as good precision
as CM [31–33]. Crucially, this implies the small number of

postselected photons contain almost all of the metrological
information. As a result, WVA potentially provides an
approach to ensure that the detector operates under the
saturation threshold even for a large number of input
photons, thereby preserving the shot-noise-scaling preci-
sion and outperforming CM [34].
In this work, we demonstrate the capability of the

WVA scheme to overcome the precision limit set by the
saturation of the detectors. As an example, we experimen-
tally measure a small transverse displacement of an optical
beam, which plays an important role in many applications
[35,36]. The results confirm that WVA outperforms the CM
in terms of precision in the presence of detector noise and
saturation. Moreover, the optimal precision of WVA can be
attained with a widely tunable probability of postselection,
which allows the precision to maintain the shot-noise
scaling (i.e., 1.19 times SNL) for a much larger number
of input photons, and extends the dynamic range of
the measurement system by two orders of magnitude.
Our analysis is also applicable to the measurement of
other physical parameters [37–39] with different kinds of
photodetectors.
Theoretical framework.—Figure 1 describes the measure-

ment of the displacement g with a standard Gaussian meter
state (MS) jΦ0i¼

R
dq1=ð2πσ2Þ1=4exp½−q2=ð4σ2Þ�jqi¼R

dpð2σ2=πÞ1=4expð−σ2p2Þjpi, where jqi and jpi are the
eigenstates of the position operator Q̂ and the momentum
operator P̂, respectively. In CM, this meter state is evolved
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under the Hamiltonian Ĥ ¼ gδðt − t0ÞP̂, which leads to the
final state jΦci¼

R
dq1=ð2πσ2Þ1=4exp½−ðq−gÞ2=ð4σ2Þ�jqi

with a displacement g in q. In contrast,WVA is regarded as an
ancilla-assisted metrological scheme. A two-level quantum
system (QS) with preselected state jψ ii¼cosðθi=2Þj0iþ
sinðθi=2Þeiϕi j1i is coupled to the meter state by the
Hamiltonian Ĥ ¼ gδðt − t0ÞÂ P̂ and then projected
onto the post-selected state jψfi ¼ cosðθf=2Þj0i þ
sinðθf=2Þeiϕf j1i, resulting in the final MS jΦfi with the
success probabilityPf, where Â is an observable of QS. In the
weak interaction regime (g ≪ σ), the average shift of jΦfi in
q or p space are, respectively, approximated as gReðAwÞ
and gImðAwÞ=ð2σ2Þ, where Aw is the “weak value” of the
observable Â, given by Aw ¼ hψfjÂjψ ii=hψfjψ ii. When the
denominator hψfjψ ii becomes small, Aw can become large
giving rise to the amplification effect.
To acquire the information about g, we perform meas-

urement on the final states jΦci of CM and jΦfi of WVA.
According to the Cramér-Rao bound (CRB), the best
precision of estimating g from ν times of repetitive
measurement is given by δ2g ≥ 1=ðνFÞ, where δ2g is the
variance of the estimator of g and F is the Fisher
information (FI) [40]. The maximum FI, known as the
quantum Fisher information (QFI), can be achieved with
the optimal measurement on the state. For CM, a meas-
urement in the position q on the jΦci is optimal such that
the FI FCM of the measured distributions equal the QFI
QCM ¼ 1=σ2. The QFI of WVA QWVA depends on the jψ ii
and jψfi but the maximal QWVA ¼ QCM. In addition,
the measurement on jΦfi in the q (p) space proves to
be optimal if the weak value is completely real (imaginary)

such that the FI FðqÞ
WVA ¼ QWVA (FðpÞ

WVA ¼ QWVA) [41].
Therefore, both CM and WVA are optimized, leading to

FCM ¼ FWVA. However, a large number of input photons is
more likely to saturate the detectors in CM than in WVA, as
illustrated in Fig. 1, which causes distortion of the
measurement on jΦci and diminishes FCM. This provides
a potential advantage of WVA over CM.
We denote the WVA with completely real and com-

pletely imaginary weak values as RWVA and IWVA,
respectively. Here, our aim is to acquire as high a precision
as possible while detecting a limited number of photons.
We maximize the FI FðqÞ

WVA (FðpÞ
WVA) normalized to QCM

over a range of Pf for different g [41], which is shown in
Fig. 1(c). The RWVA shows obvious advantages in that the
increase of Pf always promises an enhanced precision. For
example, with parameters g ¼ 0.01 and σ ¼ 0.5 in the

RWVA scheme, FðqÞ
WVA can attain over 99% of QCM over a

large range (1% to 100%) of the input photons being
detected. This incredible property provides us with great
flexibility for the choice of Pf. Consequently, WVA can
operate in an intensity range well above the noise floor but
under the saturation level of detectors, and simultaneously,
maintain the metrological information. By contrast, there is

a peak value of FðpÞ
WVA=QCM with the change of Pf in

IWVA. Indeed, Ref. [44] also shows that in IWVA, the
optimal choice of Pf (and, hence, the pre- and postselected
states) is sensitive to the parameter g. It follows that one
must have some prior knowledge of g in order to design a
measurement system using IWVA. Consequently, we
choose to implement the optimal RWVA scheme and make
a comparison to CM in our experiment.
Experiment.—The experimental setup is shown in

Fig. 2. The polarization and spatial degrees of freedom
of the CW laser beam at 633 nm with the TEM00 mode
(beam width σ ¼ 0.472 mm) are used as the ancillary QS
(j0i → jHi; j1i → jVi) and the Gaussian MS, respectively.
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FIG. 1. Comparison between the conventional measurement and the weak-value amplification. (a) Schematic for the conventional
measurement and (b) weak-value amplification of parameter g with a Gaussian meter state in the position degree of freedom of photons.
With a large number of input photons, detector saturation causes distortion in the measurement outcome in CM, while WVA avoids the
saturation due to the reduced photon number with postselection. The upper (lower) figure in (c) plots the ratio of the maximal classical

Fisher information FðpÞ
WVA (FðqÞ

WVA) in WVAwith completely imaginary (real) weak value to the quantum Fisher information QCM of CM
with ideal detection as a function of the successful postselection probability Pf for different values of g. The width of the Gaussian meter
state is 2σ ¼ 1.
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The input photons pass through a polarizing beam splitter
(PBS) and a half-wave plate (HWP) to prepare the
preselected state. The photons in the jHi (jVi) state go
clockwise (anticlockwise) in the Sagnac interferometer.
A slight displacement of the mirror results in the coupling
between the QS and the meter state. After recombination at
the output port, a HWP and a PBS performs the post-
selection. The meter state is then measured in the position q
space by a scientific CCD (Andor, iStar CCD 05577H)
with pixel size 13 μm× 13 μm. If the total average number
of photons in the Gaussian beam is n̄t per exposure, the
jth pixel of the CCD is expected to receive n̄WVA

j ðgÞ ¼
Pfn̄t

R
j dqjhqjΦfij2 and n̄CMj ðgÞ ¼ n̄t

R
j dqjhqjΦcij2 pho-

tons in the WVA and CM schemes, respectively. Since the
beam is in a coherent state, the exact number Nj of the
registered photons (i.e., photoelectrons) at the jth pixel
follows a Poisson distribution PðNjjηn̄j; gÞ, where
η ¼ 0.125 is the detection efficiency of the CCD.
Additionally, due to various kinds of electrical noise, the
response of CCD can be described by a conditional
probability distribution RðkjjNjÞ, where kj is the readout
at the jth pixel. The readout kj contains the contributions
from the dark noise Kd, Nj, and the extra classical noise
Ka. The calibration shows that Kd and Ka follow normal
distributions Kd ∼N ðμd; σ2dÞ and Ka ∼N ð0; σ2aÞ, in which
σa grows with n̄j, following lnðσ2aÞ ¼ a lnðn̄jÞ þ b with
a ¼ 1.19 and b ¼ −4.39. Thus, RðkjjNjÞ is obtained by
the convolution of dark noise and the extra classical noise
distributions. Given the saturation threshold ks, the
response at the threshold is transformed to RðksjNjÞ ¼P

kj≥ks RðkjjNjÞ. We present certain RðkjjNjÞ of our
detectors in Figs. 2(e) and 2(f). The response model of

CCD here is similar to that in Ref. [34] with digitization and
pixel noise.
Taking all of the mentioned factors into consideration,

the conditional probability distribution of kj that depends
on g is given by

PðkjjgÞ ¼
X
Nj

RðkjjNjÞPðNjjηn̄j; gÞ: ð1Þ

Subsequently, the classical Fisher information for g of the
whole CCD array can be calculated from PðkjjgÞ and
simplified as

FðgÞ ¼
X
j

η

n̄j

�
dn̄j
dg

�
2

ΓðR; n̄jÞ; ð2Þ

in which the coefficient ΓðR; n̄jÞ can be treated as the
signal-to-noise ratio at the jth pixel, taking into account the
fundamental quantum fluctuations of light and probabilistic
response of the CCD. When the n̄j in Eq. (2) is replaced by
n̄CMj or n̄WVA

j , we can obtain the FI of CM or WVA,
respectively. Equation (2) also implies that the response of
the CCDRðkjjNjÞ plays a vital role in acquiring the Fisher
information FðgÞ. For example, when the pixel approaches
saturation, ΓðR; n̄jÞ tends to zero, leading to a considerable
reduction in FI [41].
To estimate the parameter g, we apply the maximum

likelihood estimation (MLE) with the likelihood function

LðgÞ ¼
Yν
l¼1

Yτ
j¼1

�X
Nlj

RsðkljjNljÞPðNljjηn̄lj; gÞ
�
; ð3Þ

FIG. 2. Experimental setup and detector calibration. Module (a) and (c) perform the pre- and postselection of the polarization of
photons. The displacement of the mirror in module (b) couples the polarization and the spatial degree of freedom. A HWP and a
polarizing beam displacer (BD) in module (d) create two copies of the output beam in order to cancel out the adverse effects of beam
jitter and turbulence. Plots (e) and (f) give examples of the measured response matrix of the CCD, i.e., the probability distribution
RðkjjNjÞ of pixel readout kj when Nj photoelectrons are generated, far from and close to saturation, respectively.
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where ν ¼ 300 and τ ¼ 330 are the total number of frames
and pixels in one estimate, respectively. The exposure time
of each frame is 1 ms. To obtain the precision of the
estimation δg, we employ a bootstrap method [42,43,45]
with the following three steps: (i) ν frames are independ-
ently and uniformly sampled from a set of 6000 frames to
obtain one estimate of g. (ii) Repeat (i) for B ¼ 200 times to
get estimates fgig with i ¼ 1…B. (iii) Calculate the
standard deviation δg of fgig as an estimation of the
measurement precision. Since MLE is known to be able
to saturate the Cramér-Rao bound asymptotically, the
theoretical precision of WVA is given by δgMLE ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffi
νFðgÞp

.
We first compare the precision of CM and WVAwith the

identical MS for a range of the average total number
of input photons n̄t. In WVA, we set θi ¼ −θf ¼ 76°,
Pf ¼ 0.0585, and Aw ¼ 4.13. As Fig. 3 shows, CM out-
performsWVAwhen n̄t is small because CM collects all the
input photons, which helps diminish the impact of dark
noise. However, as n̄t gets large, saturation begins to occur
in the CM scheme, thereby restricting further improve-
ments of precision. In contrast, by concentrating the
metrological information into many fewer photons, WVA
avoids saturation and maintains the increase of precision
for a large n̄t. We also give an intuitive illustration in which
the FIs distributed in each pixel of CCDwith the increase of
total input photons are compared between CM and WVA
[41]. As a comparison, two other methods, split-detection
(SD) estimation, and center-of-mass estimation, are applied
to estimate g and the results are given in Ref. [41]. Both of

them show a trend similar to that of MLE but with reduced
precision, which conforms to our intuition that a more
accurate model taking into account more characteristics of
the experimental apparatus tends to extract more informa-
tion from a particular probability distribution.
Furthermore, we have also compared the precision of

WVA with Pf ¼ 0.0109, 0.0585, 0.206, 0.5, 1 by setting
θi ¼ −θf ¼ 84°; 76°; 63°; 45°; 0° and ϕi ¼ ϕf ¼ 0, respec-
tively. TheMLE results are shown in Fig. 4. We find that for
a specified average number of input photons n̄t, there exists
the optimal choice of Pf to achieve the best precision due to
the trade-off between resisting the various types of noise and
avoiding saturation in photodetectors. In our experiment, we
adapt the Pf and obtain the optimal precision for each n̄t
withMLE, which is 1.19 times the SNL since detector noise
and imperfections cannot be completely avoided [41].
Besides, SD and center-of-mass estimators give the optimal
precision 1.29 and 1.67 times SNL.
Discussion.—Although keeping a small postselection

probability Pf avoids the detector saturation to a large
extent, this may not always be the optimal strategy in
the presence of detector noise. The true power of WVA is
to adjust Pf over a large range while maintaining the
metrological information, which allows us to minimize the
overall detector imperfections and maximize the precision.
This is also the reason for the advantage of RWVA over
IWVA since the former provides a greater flexibility for the
choice of Pf.
Compared to previous works that focus on the study

of the amplification effect and signal-to-noise ratio of

FIG. 3. Comparison between the precision of conventional
measurement and that of weak-value amplification using maxi-
mum likelihood estimation. The theoretical results of MLE are
determined by the Cramér-Rao bound. All error bars refer
to �1 s.d. and are calculated from the fourth moment of the
estimated parameter g. The “shot noise limit” is determined by
δg ¼ σ=

ffiffiffiffiffiffiffiffiffi
νηn̄t

p
. The other two estimation methods, split-detection

(SD) and center-of-mass, follow a similar trend but offer reduced
precision compared to MLE [41].

(a) (b)

FIG. 4. Weak-value amplification with different success prob-
abilities of postselection Pf. (a) The precision of WVA with
different Pf and average total number of input photons n̄t. The
error bars refer to�1 s.d. In (b) we plot the ratio of the precision in
WVA to the shot-noise limit. In our experiment, we implement the
optimal precisionWVA schemewhich has theminimum ratio 1.19
for each specified n̄t. The theoretical results (lines) are determined
by the Cramér-Rao bound and the experimental results (points) are
obtained using maximum likelihood estimation.
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WVA [12,14,15], our work investigates WVA from the
parameter-estimation perspective using the FI as the metric,
which is directly related to the measurement precision. We
optimize the configurations that maximize the FI for both
WVA and CM to provide a fair comparison and verify the
unambiguous benefit of WVA. The careful calibration of all
the detector noise and imperfections allows us to apply
MLE, which saturates Cramér-Rao bound. Our results
provide compelling evidence for the metrological advan-
tages of WVA over CM in the presence of detector noise
and saturation.
In summary, by preserving all the metrological informa-

tion with a tunable fraction of postselected photons, weak-
value amplification (WVA) promises to be a key technique
for extending the dynamic range of a measurement system.
More generally, we have shown that it is possible to channel
metrological information into particular aspects of a sensor
output signal, thereby allowing one to match them to the
detector aspects that have the best specifications (e.g.,
resolution, noise in a certain intensity range, bit depth, etc.).
For now, we have opened a path to its application in a wide
variety of commercial, industrial, and scientific sensors and
instruments.
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