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Diffusion-mediated surface phenomena are crucial for human life and industry, with examples ranging
from oxygen capture by lung alveolar surface to heterogeneous catalysis, gene regulation, membrane
permeation, and filtration processes. Their current description via diffusion equations with mixed boundary
conditions is limited to simple surface reactions with infinite or constant reactivity. In this Letter, we
propose a probabilistic approach based on the concept of boundary local time to investigate the intricate
dynamics of diffusing particles near a reactive surface. Reformulating surface-particle interactions in terms
of stopping conditions, we obtain in a unified way major diffusion-reaction characteristics such as the
propagator, the survival probability, the first-passage time distribution, and the reaction rate. This general
formalism allows us to describe new surface reaction mechanisms such as for instance surface reactivity
depending on the number of encounters with the diffusing particle that can model the effects of catalyst
fooling or membrane degradation. The disentanglement of the geometric structure of the medium from
surface reactivity opens far-reaching perspectives for modeling, optimization, and control of diffusion-
mediated surface phenomena.
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The dynamics of particles near a reactive surface is
critically important for many natural phenomena and
industrial processes such as diffusion-mediated hetero-
geneous catalysis, biochemical reactions on DNA strands,
proteins and cell membranes, filtration through porous
media, permeation across membranes, surface relaxation in
nuclear magnetic resonance, target searching, and animal
foraging, to name but a few [1–8]. In a typical setting, a
particle (e.g., a molecule, an ion, a protein, a bacterium, an
animal) moves inside a confining medium; when the
particle comes close to the boundary of the medium, an
appropriate surface mechanism can be initiated, e.g., the
particle can bind to the boundary, relax its fluorescence,
magnetization, or another form of excitation, be chemically
transformed into another molecule, be transported through
a membrane pore, or be killed or destroyed (all these
distinct mechanisms will be generically called “surface
reaction” in the following). Whatever the surface mecha-
nism is, its successful realization is not granted and depends
on the state of the local environment near the particle. For
instance, the boundary can be locally inert for binding,
possess no catalytic germ or impurity for chemical trans-
formation or relaxation; the closest membrane pore, chan-
nel or gate can be temporarily inactive or already occupied,
while a predator can be asleep or not hungry; even if the
target molecule or the escape hole is found, the particle may
not overcome an energy activation or entropic barrier. In
any of such unfavorable circumstances, the particle
resumes its bulk motion until the next arrival to the
boundary, and so on [9,10]. As a consequence, the
successful realization of the surface reaction is typically

preceded by a long sequence of successive bulk explora-
tions, which are started and terminated on the surface
[Fig. 1(a)]. Even for ordinary bulk diffusion, partial surface
reactivity results in very intricate and still poorly understood
dynamics that affects the functioning of chemical reactors,
living cells, exchange devices and organs such as lungs and
placenta [1–13]. This dynamics becomes even more sophis-
ticated for mortal walkers [14–16] that have a finite random
lifetime due to, for instance, bulk relaxation, photobleaching,
radioactive decay, bulk reaction, or starving.
The conventional description of these phenomena relies

on macroscopic concentrations or, more fundamentally, on
a propagator (also known as heat kernel or Green’s
function), Gqðx; tjx0Þ, that characterizes the likelihood of
finding a particle that started from a point x0 at time 0 and
survived (not reacted) up to time t, in a bulk point x at time
t. The propagator obeys the Fokker-Planck equation, in
which the bulk dynamics dictates the form of the Fokker-
Planck operator, whereas the shape and the reactivity of the
surface set boundary conditions [50,51]. For ordinary bulk
diffusion, Collins and Kimball [52] put forward the Robin
(also known as Fourier, radiation, or third) boundary
condition

−D∂nGqðx; tjx0Þ ¼ κGqðx; tjx0Þ; ð1Þ

where D is the diffusion coefficient and ∂n is the normal
derivative. At each boundary point, the net diffusive flux
density from the bulk (the left-hand side) is equated to the
reaction flux density, which is postulated to be proportional
to Gqðx; tjx0Þ on the boundary. The proportionality
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coefficient κ (in units of speed, m/s) bears the names of
reactivity, permeability, relaxivity, or inverse surface resis-
tance [53,54], and can be related to the on-rate constant kon
of chemical reactions [55–57], to the microscopic hetero-
geneity of catalytic germs [58–61], to the opening dynam-
ics of gates, channels, or pores [62,63], to the energy
activation or entropic barrier [64], and to the probability of
the reaction event at each encounter [65–67]. The interplay
between diffusive transport from the bulk and reaction on
the surface is controlled by the ratio q ¼ κ=D, ranging from
0 for an inert boundary, to infinity for a perfectly reactive
boundary. The inverse of q, 1=q, sets a characteristic
reaction length [11,53,54,65,66]. As the surface reaction
mechanism is incorporated via the boundary condition (1),
the dependence of the propagator Gqðx; tjx0Þ on the

reactivity κ (or q) is implicit that impedes studying these
phenomena and optimizing shapes and reactivity patterns
of catalysts or clustering of receptors and pores on the cell
membrane.
In this Letter, we advocate for an alternative description

of diffusion-mediated surface phenomena based on the
concept of boundary local time. The main text describes
our findings in a general and broadly accessible but still
rigorous way (with a limited number of formulas), whereas
the Supplemental Material provides all the necessary details
for theoreticians [17]. We recall that reflected Brownian
motionXt in a confining domainΩ ⊂ Rd with a smooth inert
boundary ∂Ω is mathematically constructed as the solution
of the stochastic Skorokhod equation [68–70]:

dXt ¼
ffiffiffiffiffiffiffi
2D

p
dWt þ nðXtÞdlt; X0 ¼ x0; ð2Þ

whereWt is the standard Brownian motion, nðxÞ is the unit
normal vector, and lt (with l0 ¼ 0) is a nondecreasing
process, which increases only when Xt ∈ ∂Ω, known as the
boundary local time (see Sec. I of [17] for a discussion of this
concept). Qualitatively, Eq. (2) can be understood as a
Langevin equation with a very strong short-range repulsive
force localized on the boundary. Indeed, the second term in
Eq. (2) is nonzero only for Xt ∈ ∂Ω and ensures that the
particle is reflected in the perpendicular direction nðxÞ from
the boundary at each encounter. The peculiar feature of this
construction is that the single Skorokhod equation deter-
mines simultaneously two tightly related stochastic proc-
esses: Xt and lt. The conventional propagator G0ðx; tjx0Þ
(with q ¼ 0) characterizes the position Xt of the diffusing
particle but ignores its boundary local time lt. But it is
precisely the local time that bears information on particle’s
encounters with the boundary and is thus the key ingredient
to account for surface reactions. We therefore build an
alternative description on the full propagator Pðx;l; tjx0Þ,
i.e., the joint probability density of both Xt and lt at time t.
Due to the jumplike character of the boundary local time [see
Fig. 1(b)], finding the full propagator was the most
challenging and mathematically involved part of this work
(see Sec. II of [17]).
As the full propagator characterizes the diffusive dynamics

alone (without reactions), it is the most natural theoretical
ground, to which both bulk and surface reactions can be
added explicitly via stopping conditions. Indeed, if the
diffusing particle can spontaneously die, relax its excitation,
be chemically transformed, killed, or destroyed in the bulk,
its finite lifetime can be modeled by a random stopping time
t̂. In a common Poissonian setting, such a bulk reaction can
occur at any time instance with equal chances (characterized
by rate p), so that the lifetime of the particle obeys the
exponential distribution: Pft̂ > tg ¼ e−pt. If this bulk reac-
tion mechanism is independent of the diffusive dynamics,
averaging the full propagator Pðx;l; t̂jx0Þ over random
realizations of t̂ yields the joint distribution of Xt̂ and lt̂

FIG. 1. (a) A simulated trajectory of a particle diffusing over a
reactive surface (see the Supplemental Material [17] for details;
note that Refs. [18–49] are cited in the SM). Red, blue and yellow
balls indicate respectively the starting bulk point x0, the first
arrival point s0 onto the surface, and the consequent boundary
points at which the particle encountered the surface. Pink and
black colors encode respectively the first segment of the trajec-
tory (from red to blue ball), and the remaining part. (b) The
boundary local time lt of the simulated trajectory (black thick
line). The statistics of lt is determined by reflected Brownian
motion, while bulk and surface reaction mechanisms are then
incorporated by introducing a stopping time t̂ (vertical dashed
line) and a stopping local time l̂ (horizontal dashed line),
respectively. The surface reaction time T ¼ infft > 0∶lt > l̂g
is the random moment (indicated by arrow) when the boundary
local time lt crosses the horizontal line at l̂.
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at the moment t̂ of bulk reaction (or the particle’s death).
More generally, one can introduce elaborate stopping times
to incorporate eventual delays in the bulk diffusion due to
reversible binding to immobile centers or mobile buffer
molecules (like waiting time distribution in continuous-time
random walks), time-dependent or switching diffusivity, the
effects of rapidly rearranging dynamic medium, and other
subordination mechanisms (see [71–73] and references
therein).
Remarkably, we argue that surface reaction mechanisms

can be implemented in essentially the same way. At each
encounter with the partially reactive surface, the particle
either reacts with the probability Π ¼ 1=½1þD=ðκaÞ�≃
aq ≪ 1, or resumes its bulk diffusion with the probability
1 − Π, where a is the width of a thin reactive boundary layer
(i.e., the interaction range) [65,66]. If all reaction attempts are
independent from each other, the number n̂ of failed attempts
until the successful reaction follows the geometric law,
Pfn̂ > ng ¼ ð1 − ΠÞn ≈ expð−qnaÞ. The rescaled number
of failed reaction attempts, l̂ ¼ an̂, obeys thus the expo-
nential law: Pfl̂ > lg ¼ e−ql, with l ¼ an. As the boun-
dary local time lt is related to the numberN a

t of encounters
of the particlewith the surface up to time t, lt ¼ lima→0aN a

t
[68,69] (see also Sec. I of [17]), the reaction time T can be
defined as the moment, at which lt exceeds an independent
random stopping local time l̂: T ¼ infft > 0∶lt > l̂g
[67,74,75]. Multiplication of the full propagator
Pðx;l; tjx0Þ by the probability Pfl̂ > lg ¼ e−ql of no
surface reaction up to l and integration over l yield the
marginal propagator of the position Xt at time t of a particle,
conditioned to survive up to time t (i.e., with the condition
T > t, which is equivalent to l̂ > lt). By construction, this
average is precisely the conventional propagator:

Gqðx; tjx0Þ ¼
Z

∞

0

dle−qlPðx;l; tjx0Þ: ð3Þ

Toour knowledge, this fundamental relationwas not reported
earlier, in spite of mathematical advances in probabilistic
approaches to solving diffusion equations [26,27].
Moreover, changing the distribution of the stopping local

time l̂, one can now easily implement new surface reaction
mechanisms. In fact, the average of the full propagator
Pðx;l; tjx0Þ with the probability of no surface reaction up
to l, now determined by a desired distribution ΨðlÞ ¼
Pfl̂ > lg of l̂, yields a generalized propagator

Gψðx; tjx0Þ ¼
Z

∞

0

dlΨðlÞPðx;l; tjx0Þ: ð4Þ

This relation couples explicitly the surface reaction mecha-
nism [represented by ΨðlÞ] and the dynamics of the
particle diffusing in a domain with reflecting boundary
[represented by Pðx;l; tjx0Þ]. The striking similarity of our

implementations of bulk and surface reactions is not
surprising: while time t mimics the number of bulk steps
(and thus exposure of the particle to bulk reaction), the local
time l counts the number of encounters with the boundary
(and its exposure to surface reaction). It is crucial that both
bulk and surface reaction mechanisms, introduced via two
independent random variables t̂ and l̂ [Fig. 1(b)], are
disentangled from the dynamics. In other words, one can
first investigate the dynamics in the case of reflecting
boundary and then couple it explicitly to reaction
mechanisms.
The alternative description allows one to go far beyond

the constant reactivity based on the Robin boundary
condition (1). Indeed, the former exponential law ΨðlÞ ¼
e−ql described a Poissonian-like mechanism when the
particle could react at each encounter with the boundary
with equal probabilities. To incorporate variable reaction
probabilities, we introduce the reactivity κðlÞ that changes
with the local time l (i.e., with the rescaled number of
encounters), alike time-dependent diffusivity DðtÞ for bulk
diffusion. Extending our previous arguments (see Sec. III of
[17]), we derive the probability distribution for the corre-
sponding stopping local time l̂:

ΨðlÞ ¼ exp

�
−
1

D

Z
l

0

dl0κðl0Þ
�
: ð5Þ

This is a new feature brought by our probabilistic descrip-
tion, which allows us to investigate within the unique
theoretical framework many important diffusion-mediated
surface phenomena such as catalyst’s fooling or membrane
degradation [76,77]. In fact, choosing an appropriate κðlÞ
[or ΨðlÞ], one can control the reaction dynamics of the
boundary. For instance, the reactivity κðlÞ, which is small
at l ≈ 0 and then reaches a constant level, can model
situations when the surface needs to be progressively
activated by repeated encounters with the diffusing particle.
In contrast, when κðlÞ is large at small l and then reaches a
constant (or vanishes), one models a progressive passiva-
tion of initially highly reactive surfaces.
The generalized propagator Gψðx; tjx0Þ determines other

common characteristics of diffusion-reaction processes
such as, e.g., the survival probability or the reaction rate
(see Fig. S2 and Sec. IVof [17]). For instance, we show in
the Supplemental Material that the probability density of
the first-passage (or reaction) time T can be written as

Hψðtjx0Þ ¼
Z

∞

0

dlψðlÞUðl; tjx0Þ; ð6Þ

where ψðlÞ ¼ −dΨðlÞ=dl is the probability density
of the stopping local time l̂, and Uðl; tjx0Þ ¼
D
R
∂Ω dsPðs;l; tjx0Þ is the probability density of the

first-crossing time of a level l by the boundary local time
lt (see Sec. II. F of [17]). This relation expresses the idea
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illustrated in Fig. 1(b): the surface reaction occurs when the
boundary local time lt exceeds a random level l̂ deter-
mined by ψðlÞ. For a perfectly reactive boundary, the
reaction occurs at the first encounter with the boundary, i.e.,
at the first moment when the boundary local time exceeds
0. This is precisely the first-crossing time of the level 0, i.e.,
ψðlÞ ¼ δðlÞ, and thus Uð0; tjx0Þ is the probability density
of the common first-passage time to a perfect target [78]. In
turn,Uðl; tjx0Þ for any l > 0 describes the reaction time in
the case when the reaction occurs at the boundary local time
lt ¼ l (i.e., after a prescribed number of failed reaction
attempts). According to Eq. (6), other surface reaction
mechanisms can be described by setting the level l
randomly, i.e., by introducing the stopping local time l̂.
Figure 2 exemplifies the impact of surface reaction

mechanisms onto the distribution of the reaction time.
Here the family of the probability densities Uðl; tjx0Þ
(parametrized by l) is presented for a spherical target,
surrounded by an outer reflecting sphere. Three probability
densities ψðlÞ determining surface reaction mechanisms
[with κðlÞ in the inset] are plotted on the left projection,
while the resulting reaction time densities Hψðtjx0Þ are
shown on the right projection. For a constant reactivity, the
average of Uðl; tjx0Þ with the exponential density qe−ql

(gray line) results in the conventional reaction time dis-
tribution [79]. Here, a single “hump” region around the

most probable reaction time is followed by a flat part and
ultimate exponential decay, as it should be for a bounded
domain. If the target is passive at the beginning (red line),
first arrivals of the particle onto the target do not produce
reaction up to some local time l0, thus shifting the
probability density of the reaction time to longer times.
Curiously, an unusual second “hump” region emerges due
to the particles that moved away from the target, explored
the confining domain and then returned to the target (see
also Sec. VI of [17]). In the third example (blue line), the
reactivity is negligible at the beginning, reaches a maxi-
mum around l=R ≈ 0.7, and then slowly decreases as
1=ð2qlÞ at large l. The overall shape of the reaction time
densityHψ ðtjx0Þ resembles that of the conventional setting,
but exhibits anomalous power law decay at long times:
Hψðtjx0Þ ∝ t−3=2. Here, as the encounter-dependent reac-
tivity offers an optimal range of local times for surface
reaction, a particle that failed to react during this range, has
lower and lower chances to react after more or more returns
to the target.
More generally, the asymptotic large-l decay κðlÞ ∝

1=l turns out to be the critical regime that distinguished
three scenarios for arbitrary bounded domains (see Sec. VI
of [17]): (i) if κðlÞ decays slower than 1=l (or increases
with l),Hψðtjx0Þ exhibits the long-time exponential decay,
as in the conventional setting; (ii) if κðlÞ decreases as νD=l
with some constant 0 < ν < 1, then Hψðtjx0Þ ∝ t−1−ν,
which is a new unexpected feature for bounded domains;
(iii) if κðlÞ decays faster than 1=l, the reaction time can be
infinite with a finite probability:

PfT ¼ ∞g ¼ Ψð∞Þ ¼ exp
�
−
Z

∞

0

dl
κðlÞ
D

�
> 0: ð7Þ

In other words, this is the probability of no surface reaction
in a bounded domain: even though the exploration is
compact, the reactivity decays too fast so that the particle
may fail to react even after an infinite number of returns to
the target. Several surface reaction models and the behavior
of the underlying reaction time distributions and reaction
rates are discussed in Sec. VI of [17].
In summary, we developed a powerful probabilistic

description of diffusion-mediated surface phenomena
based on the concept of boundary local time. By intro-
ducing the full propagator to describe confined diffusion
with reflections on the boundary, we succeeded to in-
corporate surface reactivity explicitly via a stopping
condition. The disentanglement of the surface reactivity
from the dynamics allowed us to introduce encounter-
dependent reactivity κðlÞ and to describe a variety of new
surface reaction mechanisms. We discussed how different
forms of κðlÞ affect the reaction times and revealed some
intriguing anomalous features in their distribution.
The developed formalism opens a vast area for future

research. On the theoretical side, one can study how the
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FIG. 2. The probability density Uðl; tjx0Þ (rescaled by R2=D)
of the first-crossing time of a level l by the boundary local time
lt for a spherical target of radius R, surrounded by an outer
reflecting concentric sphere of radius L, with jx0j=R ¼ 2
and L=R ¼ 10. Three curves on the left projection illustrate
three probability densities ψðlÞ of the stopping local time l̂
(with qR ¼ 1): (1) ψðlÞ ¼ qe−ql (gray line, conventional set-
ting), (2) ψðlÞ ¼ qe−qlΘðl − l0Þ with l0=R ¼ 5 (red line),
and (3) ψðlÞ ¼ qe−1=ðqlÞ=½ ffiffiffi

π
p ðqlÞ3=2� (blue line). These

densities correspond, respectively, to three reactivity profiles
shown on the inset: κðlÞ ¼ qD, κðlÞ ¼ qDΘðl − l0Þ, and
κðlÞ ¼ qDe−1=ðqlÞ=½ ffiffiffi

π
p ðqlÞ3=2erfð1= ffiffiffiffiffiffi

ql
p Þ�. Three curves on

the right projection show the corresponding probability densities
Hψ ðtjx0Þ from Eq. (6).
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diffusive dynamics in domains with complex geometric
structures (such as the interior of an eukaryotic cell, a
chemical reactor, or a human acinus) is coupled to different
surface reaction mechanisms. One can further extend this
approach to investigate (i) the (anti)cooperativity effects of
multiple diffusing particles whose individual encounters
with the boundary change its reactivity; (ii) the competition
between multiple targets, each described by its own
boundary local time; (iii) the combined impact of bulk
and surface reaction mechanisms; (iv) the effects of
correlations between successive encounters, and (v) the
presence of long-range interactions with and reversible
binding to the boundary. In particular, our probabilistic
description of the bulk exploration step until reversible
binding to the boundary can bring complementary insights
to former theoretical approaches based on coupled diffu-
sion-reaction equations [80–84] (see Sec. VII of [17]). On
the application side, appropriate surface reaction models
should be identified to describe industrial examples of
catalyst fooling, membrane aging and many other diffu-
sion-mediated surface phenomena, in which the surface
properties depend on the number of encounters. One can
also address a new class of optimization problems targeting
optimal reaction rates or prescribed distributions of reaction
times or positions, either by adapting the surface reaction
mechanisms for a given geometric structure of the medium,
or by optimizing its structure for a given surface reaction
mechanism, or both. The disentanglement of the geometric
structure from the surface reaction mechanism is the key
that has now opened the door to such applications.
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Research Award.
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