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The friction between cytoskeletal filaments is of central importance for the formation of cellular structures
such as the mitotic spindle and the cytokinetic ring. This friction is caused by passive cross-linkers, yet the
underlying mechanism and the dependence on cross-linker density are poorly understood. Here, we use
theory and computer simulations to study the friction between two filaments that are cross-linked by passive
proteins, which can hop between discrete binding sites while physically excluding each other. The
simulations reveal that filaments move via rare discrete jumps, which are associated with free-energy barrier
crossings. We identify the reaction coordinate that governs the relative microtubule movement and derive an
exact analytical expression for the free-energy barrier and the friction coefficient. Our analysis not only
elucidates the molecular mechanism underlying cross-linker-induced filament friction, but also predicts that
the friction coefficient scales superexponentially with the density of cross-linkers.
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The formation of cytoskeletal structures like the mitotic
spindle [1–15] and the cytokinetic ring [16–19] depends
not only on motor proteins, but also on nonmotor proteins
that cross-link the filaments passively. Force generation is
often attributed to the motor proteins, but passive cross-
linkers can generate driving forces too, via their conden-
sation to the overlap between the filaments [19,20] or via
the entropy associated with their diffusion within the
overlap region [21]. Yet, in these highly dynamic systems
both active and passive cross-linkers also create frictional
forces, which oppose the motor, condensation, or entropic
driving forces. These frictional forces are a central deter-
minant of the mechanical properties of cytoskeletal struc-
tures [22], limit the speed and efficiency with which these
structures are formed [19,23–25], and can even be vital for
their stability because motor forces need to be balanced by
stabilizing passive cross-linkers [3,6–10]. Furthermore,
asymmetric friction forces can harness active filament
fluctuations to generate directed motion of passive cross-
linkers [26] and enhance the motion of motor proteins [27].
Friction in cellular systems has been studied theoreti-

cally. Prandtl-Tomlinson models [28], in which a particle
moves over a sinusoidal potential, have been used to study
how protein-filament [26,29,30] and filament-filament [22]
friction depends on the velocity [22,26,29,30] and the
polarity of the filaments [22,26,29]. The Frenkel-
Kontorova model [28], in which filaments consist of units
connected via springs, has been employed to study how the
contact friction depends on the overlap length between
filaments [22]. Huxley-Lacker-Peskin type models, in
which rigid filaments interact through cross-linkers that
are modeled as harmonic springs that bind to a continuum
or discrete set of binding sites [31–36] have been used to
investigate force-velocity relations, and how these depend

on the stiffness of the cross-linkers and the underlying
substrate, and on the rates of cross-linker-filament attach-
ment and detachment [20,36,37].
Yet, to understand the size of cytoskeletal structures such

as the mitotic spindle and the cytokinetic ring, the speed
and efficiency with they are formed, and the forces they can
generate, it is vital to understand how the friction coef-
ficient depends on the number of cross-linkers and on the
overlap length between filaments [38]. Previous models
either assume [7,26,39–41] or would predict [20,37,42] that
the friction scales linearly with the number of cross-linkers.
Recent in vitro experiments have demonstrated that a

protein from the Ase1/PRC1 family, which passively cross-
links microtubules in the mitotic spindle, generates friction
forces that do not scale linearly but rather exponentially
with the number of cross-linkers in the overlap region [21].
The system exhibits generic features that are also found in
other systems, such as the cytokinetic ring [19]. In
particular, the filaments consist of a regular lattice of
subunits that are of similar size as the cross-linkers. The
cross-linkers thus bind to a discrete set of binding sites,
while they are also stiff on the length scale set by the
spacing between the binding sites, as discussed in more
detail below. These assumptions are in marked contrast to
the continuum of binding sites in the current theoretical
models that predict a linear scaling of the friction with the
number of cross-linkers [20,37,42].
Here, we present a model in which cross-linkers hop

between discrete binding sites in the overlap region (Fig. 1).
Our analysis shows that the discrete nature of the binding
sites combined with the stiffness of the cross-linkers makes
that the filaments can only move if the cross-linkers
reorganize collectively. This turns filament movement into
an activated process with an energy barrier that scales
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linearly with the number of cross-linkers. It explains why
the friction scales exponentially with the number of cross-
linkers. At higher densities our model predicts that the
friction scales superexponentially with the number of cross-
linkers, because of an entropic effect caused by steric
hindrance.
Our model is shown in Fig. 1. It resembles the exper-

imental setup used to measure the filament friction gen-
erated by Ase1 cross-linkers in vitro [21]. We probe the
friction though a small mobile microtubule connected via
cross-linkers to a microtubule that is fixed on the bottom.
The top microtubule shows one-dimensional movement
parallel to the bottom one, and we avoid entropic force
generation by having a constant overlap length [21]. Both
microtubules contain a one-dimensional lattice of binding
sites with spacing δ ¼ 8 nm [43,44], and cross-linkers can
hop between neighboring sites while they physically
exclude each other.
To allow for movement of both the microtubule and the

linkers, cross-linkers can stretch as Hookean springs with
spring constant k and both ends of each linker can hop to
empty neighboring binding sites. The effective parameter k
is estimated from experimental data by observing how the
diffusion constant of cross-linkers in overlaps is reduced
compared to that of proteins on a single microtubule
(Sec. S.I of the Supplemental Material [45]). We find
k ¼ 1.1 × 105 kBT=μm2, which is comparable to values
reported for similar proteins [35,46–48]. This value
strongly suppresses stretching more than δ, and to facilitate
model analysis and speed up simulations, we choose to
impose a maximum stretch of one lattice spacing.
The position of the mobile microtubule relative to the

fixed one is called x, such that x modulo δ represents
the misalignment of the two lattices. The requirement that

the cross-linking springs are extended less than one lattice
spacing only allows for springs that are extended horizon-
tally by a distance of either x or δ − x. These are
respectively called left- and right-pulling cross-linkers
(Fig. 1). We model the movement of the top microtubule
using Brownian dynamics with an intrinsic drag coefficient
[49], and implement cross-linker hops through a kinetic
Monte Carlo algorithm [50] (Sec. S.II of the Supplemental
Material [45]).
Ase1/PRC1 (un)binding from the microtubule overlap

plays no role in the in vitro friction experiments [21],
leading us to exclude these reactions. Ignoring binding
effects reduces the number of parameters, and allows us to
focus on the specific dependence of the friction on the
absolute number of cross-linkers in the microtubule overlap
region N, and on the size of this region—the number of
lattice sites on the mobile microtubule l.
We visualize the dynamics of the mobile microtubule

using computer simulations in Fig. 2. The position of the
top filament makes discrete jumps between points
fx∶x≡ 0ðmod δÞg, where cross-linkers are energetically
relaxed. The waiting time between jumps is exponentially
distributed with rate 2r (Sec. S.III of the Supplemental
Material [45]), which suggests that a single barrier exists
between these states.

FIG. 1. Model of the microtubule overlap. The filaments are
represented as one-dimensional lattices with spacing δ and are
connected by cross-linking proteins, described as springs. The
bottom filament is fixed, while the top filament can move in the
longitudinal direction due to Brownian motion with diffusion
constant Dm or the pulling of stretched cross-linkers. Cross-
linkers can make a diffusive step, causing them to switch from
right-pulling linkers labeled R to left-pulling linkers denoted L,
or vice versa. Two of such possible transitions, together with their
rates h, are indicated by orange arrows. The fixed microtubule is
infinitely long and the mobile one has l lattice sites. There are N
cross-linkers connecting the two filaments, which stay bound
indefinitely.

FIG. 2. A typical time trace of the mobile microtubule position
shows that it moves with sudden jumps. Horizontal lines denote
positions where the microtubules are in register. The jumps occur
at a fixed rate in both directions, which can be estimated from the
mean waiting time in simulations, r ¼ 1=2τ̄. (inset, top-left) A
typical transition, where the microtubules begin and end in
register. Cross-linkers are stretched in intermediate states, which
energetically suppresses transitions. (inset, bottom-right) The
observed rate of microtubule jumps appears to decrease expo-
nentially with the number of cross-linkers N. Dots show
simulation estimates of the rate, whereas the line shows a least
square exponential fit. In the examples, l ¼ 40, and N ¼ 12 for
the time trace.
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The jumping behavior causes effective Brownian motion
of the microtubule with diffusion constant D ≈ δ2r
(Sec. S.III of the Supplemental Material [45]). We can
estimate the effective friction coefficient of the cross-linked
microtubule ζ using the Einstein relation [51],

ζ ¼ kBT
D

¼ kBT
δ2r

: ð1Þ

Hence, we can focus our attention on the jump rate r, which
indirectly gives the friction coefficient via Eq. (1). In
Sec. S.IV of the Supplemental Material [45] we show that
the friction coefficient computed via Eq. (1) agrees with
that as obtained by applying an external force on the top
filament, provided the system is in the linear-response
regime of low force and speed, where the cross-linkers have
time to reequilibrate in between the filament jumps.
The bottom-right inset of Fig. 2 shows that the jump rate

r decreases roughly exponentially with the number of
cross-linkers in the overlap N. This indicates that the
friction coefficient ζ increases exponentially with the
number of cross-linkers [Eq. (1)], whereas one would
naively expect it to increase linearly with N [7,20,26,37,
39,40,42].
To investigate the origin of the exponential decrease of

the jump rate, we calculate the free-energy landscape as a
function of two order parameters involved in the filament
jumps. Without loss of generality, we focus on a jump to the
right. As shown in the top-left inset of Fig. 2, a jump
requires the microtubule to move one lattice spacing, and
all cross-linkers need to make one net hop. The former
change is captured by the microtubule position x changing
from 0 to δ, and the latter change is described by the
number of right-pulling cross-linkers NR changing from 0
to N. To find the free energy as a function of the order
parameters x and NR, we first calculate the potential energy
of the system,

Uðx; NRÞ ¼
1

2
kx2ðN − NRÞ þ

1

2
kðδ − xÞ2NR

¼ 1

2
kδ2N

��
x
δ
−
NR

N

�
2

þ NR

N

�
1 −

NR

N

��
: ð2Þ

All potential energy is stored in the springs, and there are
NR right-pulling linkers with stretch δ − x and N − NR left-
pulling linkers with stretch x. When the values of the order
parameters x and NR are set, all microstates have the same
potential energy. Hence, we can make use of Boltzmann’s
formula S ¼ kB logΩ to calculate the entropy of the
system, where Ωðx; NRÞ represents the number of micro-
states due to different permutations of the cross-linkers in
the overlap. Furthermore, the number of different permu-
tations of the L and R linkers is independent of the position
x, meaning that Ωðx; NRÞ ¼ ΩðNRÞ. The Helmholtz free
energy is thus

F ðx; NRÞ ¼ Uðx; NRÞ − TSðx; NRÞ
¼ Uðx; NRÞ − kBT logΩðNRÞ: ð3Þ

Surprisingly, it is possible to obtain a closed form
expression for ΩðNRÞ (Sec. S.V of the Supplemental
Material [45]),

ΩðNRÞ ¼
�
l − NR

N − NR

��
l − N þ NR

NR

�
: ð4Þ

Intuitively, the first binomial factor represents the number of
ways N − NR L linkers can be placed in an overlap with l
sites, when NR of those sites are excluded by R linkers. The
second factor is simply the symmetric counterpart to the first
one, and counts permutations of the R linkers. With Eq. (2)
and Eq. (4), we have arrived at an exact solution for the free-
energy Eq. (3) (Sec. S.VI of the Supplemental Material [45]).
Figure 3 clearly shows that a free-energy barrier exists
between two minima located at ðx ¼ 0; NR ¼ 0Þ and
ðx ¼ δ; NR ¼ NÞ, where the cross-linkers are relaxed.
As can be seen in Eq. (2), the lowest free-energy path

that connects the two minima obeys x=δ ¼ NR=N, which
corresponds to the diagonal of Fig. 3. As shown in

FIG. 3. Helmholtz free-energy as a function of the position x
and the number of right-pulling cross-linkers NR. Free-energy
minima exist at the bottom-left and top-right corners, where the
two filaments are in register and the cross-linkers are fully
relaxed. These minima are separated by a free-energy barrier,
where the cross-linkers are stretched (see Fig. 2). A transition
over the barrier is observed as a jump of the microtubule, and two
transition paths are shown for illustration. NR is a discrete
parameter, and a weak sinusoidal y offset was added to the
paths to visualize their course. In this example, we use N ¼ 12
and l ¼ 40. (inset) The free-energy profile as a function of the
reaction coordinate α. The height of the barrier is the difference
between the Helmholtz free-energies at α ¼ 0 and α ¼ 1=2.
Discontinuities occur due to the discrete nature of NR in the
definition of α.
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Figs. S.11 and S.12 of the Supplemental Material [45],
transition paths typically follow this diagonal, and the
transition state ensemble as defined by Hummer [52] is
perpendicular to it (Sec. S.VII of the Supplemental Material
[45]). Therefore, the reaction coordinate is

α ¼ 1

2

�
x
δ
þ NR

N

�
; ð5Þ

which shows that the filament jumps involve a coupling
between filament movement and cross-linker hops. The
inset of Fig. 3 plots the free energy marginalized to α,
revealing the effective barrier that the microtubule has to
overcome every time it makes a δ ¼ 8 nm move.
According to Eq. (1), the friction coefficient is deter-

mined by the microtubule jump rate r, which depends on
the free-energy barrier height ΔF ‡ via [53]

rðN;lÞ ¼ r0ðN;lÞ exp ½−βΔF ‡ðN;lÞ�: ð6Þ

The prefactor r0 depends on the intrinsic drag coefficients
of the top filament and cross-linkers, and, at least in
principle, also on the number of cross-linkers N and the
number of sites in the overlap l. Yet, we find that the
dependence on N and l is very weak, indicating that α
accurately captures the reaction coordinate (Sec. S.VIII of
the Supplemental Material [45]).
Our expression for the free energy, via Eqs. (2)–(4), is

exact, but how it is shaped by N and l remains obscure
due to the discrete binomial coefficients. Therefore, we
create a continuous approximation of the entropic term [54]
(Sec. S.IX of the Supplemental Material [45]). We find the
following simplified analytical expression for the barrier
height,

βΔF ‡ ≈ Aþ BN exp

�
1

4B
N
l

�
: ð7Þ

Here,

A ¼ 1

2
log

�
1þ 3kδ2

4kBT

�
; B ¼ kδ2

8kBT
− logð2Þ; ð8Þ

where B is positive since k is large relative to kBT=δ2.
Figure 4 shows that this approximation is in excellent
agreement with the exact result of Eqs. (2)–(4).
Since the parameter A has no N or l dependence, we

ignore it and absorb it in the kinetic prefactor r0 in Eq. (6).
Equation (7) then shows that when the cross-linker density
N=l is low, the barrier height is proportional to the number
of cross-linkers N. The contribution of each linker B has an
energetic and an entropic component, which can be under-
stood intuitively by noting that at the top of the barrier, on
average, NR ¼ NL ¼ N=2 and each linker is stretched by a
distance δ=2: the average potential energy per linker is then
kδ2=8 (see also Fig. S.8 of the Supplemental Material [45]),

while the entropy per cross-linker is log(2). At higher cross-
linker densities, however, the cross-linkers increasingly
block each other’s hops, and the barrier scales exponen-
tially with the cross-linker density N=l.
Combining Eqs. (6), (7) and (1) shows that the friction

coefficient increases exponentially with N at low cross-
linker density N=l but superexponentially at higher
densities:

ζ ∝ exp

�
BN exp

�
1

4B
N
l

��
: ð9Þ

Hence, the crossover to superexponential scaling occurs
when N=l ≈ 4B, which means that the critical overlap
length l� at which this scaling sets in increases linearly
with N. Yet, because ζ depends not only on N=l but also on
N separately, an overlap that is compressed at a high and
constant N may effectively stall before the superexponential
regime is reached, simply because the friction becomes
prohibitive. For the parameter values of Table S.1 of the
Supplemental Material [45] and a force of 10 pN [55]
this occurs when N ≈ 20, corresponding to l� ≈ 200 nm
(Sec. S.X of the Supplemental Material [45]). We emphasize
however that ζ depends hypersensitively on the cross-linker
stiffness k and the lattice spacing δ [Eqs. (8)–(9)]; reducing k
by 10 percent increases l� threefold. Hence, different linkers,
such as the actin-binder anillin [19], or even other members

FIG. 4. The free-energy barrier height ΔF ‡ increases exponen-
tially with the number of cross-linkers N. The exact values [given
by Eqs. (2), (4)], plotted as points, are approximated well by the
continuous exponential curves as given by Eq. (7). Notice that
the number of cross-linkers cannot exceed the number of sites on
the microtubule, N ≤ l. Furthermore, we plot the approximated
barrier height for an infinitely long mobile microtubule, which
demonstrates that the barrier height increases linearly with N
when the cross-linker density N=l is low. Using Eqs. (1) and (6),
we predict that the friction coefficient ζ increases exponentially
with N at low cross-linker densities and superexponentially with
N at high densities.
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from the same Ase1/PRC1 family, are expected to have
markedly different l�.
In conclusion, our work has revealed how passive cross-

linkers cause friction between filaments. If the cross-linkers
were to bind to a continuum of binding sites, then the
friction coefficient would scale linearly with the number
of cross-linkers, as predicted by previous models
[7,20,26,37,39–42]. However, cytoskeletal filaments such
as microtubules consist of discrete units, yielding discrete
binding sites for the cross-linkers. Moreover, cross-linkers
such as Ase1/PRC1 are stiff on the scale of the spacing
between the binding sites (kδ2 > kBT). These two factors
together mean that the filaments can only move if the cross-
linkers reorganize collectively. This creates a free-energy
barrier for filament movement which scales exponentially
with the density of cross-linkers [Eq. (7)]. Since the friction
between the filaments depends exponentially on the height
of the free-energy barrier, the friction depends superexpo-
nentially on the density of cross-linkers. In Sec. S.XI of the
Supplemental Material [45] we show that cooperative
interactions between cross-linkers [5,56] do not alter the
fundamental mechanism for friction generation, and the
fricton coefficient continues to scale superlinearly with N.
While we have studied here a single-protofilament model,
we expect that multiprotofilaments exhibit the same scal-
ing, because multiple protofilaments do not alter the basic
mechanism that underlies the scaling: filaments jumping
between positions where the cross-linker stretching energy
is minimized.
The highly nonlinear dependence of the friction coefficient

ζ on the number of cross-linkers N and the overlap length l
has implications in biology, both for the formation of the
mitotic spindle [1–15] and the cytokinetic ring [16–19].
Equation (8) shows that the key parameters that control the
scaling of ζ with N and l are the lattice spacing δ and the
protein stiffness k. To understand the contraction speed of
thecytokinetic ring, itwill beof interest to estimatek for cross-
linkers like anillin [19] since it will determine how rapidly the
friction rises when the ring contracts. In the mitotic spindle
microtubules are pushed apart by plus-end directed motor
proteins [6,11,13,14,57–60]. Our results indicate that the
friction generated by proteins from the Ase1/PRC1 family is
highly sensitive to the cross-linker density. As a result, a
shrinking overlap region undergoes a sudden increase in the
friction coefficient, which will effectively stall the micro-
tubules. Hence, steric hindrance imposes stable overlaps not
onlybyopposingmotor stepping [13]but alsobydramatically
increasingthefriction.Theoverlap lengthcanbefine-tunedby
controlling the number of cross-linkers contained in the
overlap, for example, by reducing the binding affinity of
PRC1 to microtubules through phosphorylation [44].
Our work yields a number of predictions that can be

tested experimentally. First, it predicts that cross-linked
filaments move via discrete jumps, which can be tested via
in vitro gliding assays using microtubules coated with

quantum dots, allowing for nanometer precision [61].
Optical tweezers with sub-pN and nanometer resolution
could be used to directly measure the free-energy profile
[62]. But the most interesting test would be to measure the
friction coefficient as a function of N and l, either via the
diffusion constant and the Einstein relation [Eq. (1)] [21],
or via an applied load using a stiff optical trap (Sec. S.IVof
the Supplemental Material [45]). Different filament-cross-
linker systems, with different protein stiffness k and lattice
spacing δ, are now accessible in vitro [19,21], which should
make it possible to test the predicted scaling of Eq. (9).
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