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We explore the microstructure and phase behavior of confined soft colloids which can actively switch
their interactions at a predefined kinetic rate. For this, we employ a reactive dynamical density-functional
theory and study the effect of a two-state switching of the size of colloids interacting with a Gaussian pair
potential in the nonequilibrium steady state. The switching rate interpolates between a near-equilibrium
binary mixture at low rates and a nonequilibrium monodisperse liquid for large rates, strongly affecting the
one-body density profiles, adsorption, and pressure at confining walls. Importantly, we show that
sufficiently fast switching impedes the phase separation of an (in equilibrium) unstable liquid, allowing
the control of the degree of mixing and condensation and local microstructuring in a cellular confinement
by tuning the switching rate.
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Active matter systems have drawn the attention of the
soft matter scientific community in recent years due to their
very rich dynamic behavior. They are composed by
individual particles, each of which consumes energy in
order to move, react, or to produce mechanical forces.
Prominent examples of active soft matter systems are self-
propelled nanoparticles, contracting biopolymers such as
proteins or actin filaments inside the cytoskeleton, biologi-
cal cells and bacteria [1–7], or synthetic active hydrogels
[8–10] and vesicles [11,12]. Fascinating new dynamics
have been revealed; for example, self-propelling activity
has been shown to lead to motility-induced swarming,
jamming, or phase separation [13,14].
Biological activity, in particular mediated through fuel-

driven changes of molecular properties and conformations,
has been made responsible for liquid-liquid phase separa-
tion and condensation in cells, with large implications
for physiology and disease [15,16]. Living cells contain
distinct subcompartments to facilitate spatiotemporal regu-
lation of biochemical reactions where transient micro-
structuring is key for function. Those biology-inspired,
nonequilibrium transient morphologies bear potential for
the design of novel adaptive materials [17], e.g., by
harvesting switchable self-assembly and structuring [9].
The microscopic origins and features of nonequilibrium
structuring, however, are not well understood. Theoretical
frameworks for interacting reaction-diffusion systems have
been linked so far only to microstructuring dynamics of
nonactive systems driven by chemical reactions [18–21] or

virus infections [22]. However, activity-controlled structur-
ing, demixing and condensation in confinement by switch-
ing microscopic conformations (and resulting interactions)
has not been addressed so far.
In this Letter, in contrast to thewell-studiedmotile activity

[13,14], we investigate the effects of active conformational
switching of particles on the liquid microstructuring in
confinement, such as a wall or a cellular compartment. For
this, we employ a reactive dynamical density functional
theory (R-DDFT) put forward in other flavors previously
[18–21] and apply it to the binary switching of the size of
soft, interacting colloids. The latter serve as a generic model
for polymers and soft colloidal hydrogels [23,24] and cells
[25], where size is used as the simplest interactionvariable to
describe a conformational change. We show that the system
then interpolates between an equilibrium binary mixture at
low switching rates and a nonequilibrium monodisperse
system for large rates. As a consequence, the variation of the
rate substantially modifies the microstructure and phase
separation of the active liquid in confinements. Hence, we
demonstrate that active interaction switching dynamically
controls the demixing, condensation, and local microstruc-
turing in compartmentalized situations.
As a simple model system, mimicking, e.g., soft active

hydrogels or vesicles switching (or “breathing”) between two
states [8–11] or responsive, conformationally switching
biopolymers [4,7,15], we employ repulsive soft particles
that can actively switch between two states “big” (b) and
“small” (s) which differ in particle size. The interactions are
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defined by repulsive Gaussian pair potentials [26], βuijðrÞ ¼
ϵije

−r2=σ2ij (i; j ¼ s, b), where r is the interparticle distance,
β ¼ 1=ðkBTÞ the inverse thermal energy, ϵij > 0 the inter-
action strength, and σij represents their size (we denote σbb
and σss by σb and σs, respectively). Gaussian potentials are
appropriate to describe polymers and soft colloids [23,27].
A benefit is that one- and two-component Gaussian systems
are well understood in and out of equilibrium and the mean-
field free energy functional in DFT is quasiexact for these
systems [28–33].
We emphasize that this model is actually a one-

component colloidal system, but since every individual
particle has two states (b and s), every microstate
and also average (steady-state) distributions have to be
described as for a binary mixture. We denote Nb and Ns as
the number of repulsive Gaussian particles of type b
and s inside a volume V, at fixed temperature T. The
instantaneous bulk number density of both species are
given by ρi ¼ Ni=V (i ¼ b, s). We denote the total
(conserved) number density by ρT ¼ ρb þ ρs ¼ const,
and define a concentration ratio by x ¼ xs ¼ ρs=ρT. The
total volume fraction of particles is ϕT ¼ ϕb þ ϕs ¼
ðπ=6Þðρbσ3b þ ρsσ

3
sÞ. Nonequilibrium switching activity

implies that particles of type b can be converted into s at
a rate kbs (units of time−1). Conversely, particles of type s
convert into b at a rate ksb. This elementary “chemical”
reaction process is ruled by the set of first-order differential
equations [34]

dρb=dt¼ ksbρs−kbsρb; dρs=dt¼ kbsρb−ksbρs: ð1Þ
The integration of these equations leads to exponential
decaying time-dependent concentrations [35]. In particular,
the equilibrium composition achieved in the limit t → ∞
satisfies ρs;∞=ρb;∞ ¼ x∞=ð1 − x∞Þ ¼ kbs=ksb, where ρi;∞
are the equilibrium densities.
In order to calculate the effect of the switching rate on the

average (steady-state) liquidmicrostructure under a confining
external potential uexti ðrÞ (i ¼ b, s) we make use of classical
DDFT [36,37],which successfully described theoverdamped
out-of-equilibriumdynamics of various softmatter systems in
external potentials [38–40], including Gaussian colloids
[31–33] and the action of motile activity [41–43]. Here,
we extend the DDFT formulation to active mixtures in which
each component switches into the other at some fixed rate, so
the time evolution of the particle concentrations ρiðr; tÞ is not
only due to the diffusive fluxes, but also to the position-
dependent production and disappearance of each component
following the switching. Analogous to related DDFT-based
reaction-diffusion approaches [19–22], the governing reac-
tive DDFT (R-DDFT) equations read( ∂ρbðr;tÞ∂t ¼ −∇ · Jb þ ksbρsðr; tÞ − kbsρbðr; tÞ

∂ρsðr;tÞ∂t ¼ −∇ · Js þ kbsρbðr; tÞ − ksbρsðr; tÞ
; ð2Þ

where Ji ¼ −Di½∇ρi þ ρi∇βðuexti þ μexi Þ� (i ¼ b, s) are
the diffusive fluxes, Di ¼ kBT=ð3πησiÞ are the diffusion
constants of both species, and μexi ðr; tÞ ¼ δFex½fρiðr; tÞg�=
δρiðr; tÞ are the functional derivatives of the equilibrium
excess free energy functional, evaluated using the
nonequilibrium density profiles, ρiðr; tÞ [36,37]. Since
Gaussian particles behave as a weakly correlated mean-field
fluid over a surprisingly wide density and temperature range
[28], we use the mean-field excess functional Fex ¼
1
2

P
i;j¼b;s ∬ ρiðr; tÞρjðr0; tÞuijðjr − r0jÞdrdr0. Details about

the boundary conditions and numerical integration are shown
in the Supplemental Material [35].
As first applications we investigate emblematic inhomo-

geneous situations in confining potentials, namely, the liquid
structuring at a single hard wall and the phase separation
in a cellular confinement, in which the kinetic rate constants
kbs and ksb for active switching fulfill the condition
kbs=ksb ¼ x=ð1 − xÞ. In this way, reference bulk concen-
trations remain unaltered, but the inhomogeneous properties
suffer the effect of the switching. We define the normalized
switching rate, or switching activity as a ¼ kbsσ2s=Ds. For
a ≪ 1, the b⇌s conversion rate is so slow that the time
evolution of the density profiles is dominated by diffusive
equilibration, being faster than the transformative changes. It
is easy to see from Eq. (2) that the steady state (∂ρi=∂t ¼ 0)
then essentially reduces to the situation of a binarymixture in
equilibrium. Conversely, for a ≫ 1 the exchange rate is so
large that the diffusion is not fast enough to “smear out” local
activity effects, so the activity dominates the structure. In this
limit, we will demonstrate that the systems behave in the
steady-state as a nonequilibrium monodisperse system of
same interaction size.
Table I specifies the interaction parameters and particle

concentrations for three systems (S1 to S3). S1 and S2 are
inside the stable region of the phase diagram, whereas S3 is
located in the unstable region, so it undergoes a fluid-fluid
demixing in equilibrium. For all cases, we study the final
steady state for active systems from a ¼ 0 (nonactive
equilibrium) to large activities a ¼ 104.
We first investigate the role that switching activity plays

on the structure and adsorption of the liquid at a hard wall.
We show in Figs. 1(a) and 1(b) the final steady state for
different active systems from a ¼ 0 to a ¼ 104 (for the
nonequilibrium relaxation from a nonsteady state, see
Ref. [35]). These results show that the equilibrium density

TABLE I. Interaction parameters and concentrations for the
three investigated systems. S1 and S2 are stable, whereas system
S3 is unstable (demixing) in equilibrium.

System ϵbb ϵss ϵbs σb=σs σbs=σs ρTσ
3
s ϕT x kbs=ksb

S1 2 2 2 2 1.5 0.239 0.3 0.8 4
S2 2 2 2 2 1.5 0.191 0.45 0.5 1
S3 2 2 1.888 1.504 1.277 2.4 2.765 0.5 1
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profiles (a ¼ 0) near the wall experience a considerable
change even for relatively small values of the activity [ρsðzÞ
significantly raises up for a ¼ 0.1]. Increasing the value
of a entails a progressive desorption of big colloids from
the wall and an enhanced adsorption of small ones.
Importantly, for growing a ≫ 1 the system tends to a
steady state in which the density profiles of both compo-
nents converge to each other. This trend is confirmed in
Fig. 1(c), where the normalized density profiles ρiðzÞ=ρbulki
of both components are depicted for increasing a. For
a≳ 102 both curves converge to a common average profile.
In other words, in the limit of large switching activity, the
system is fully monodisperse. In fact, evaluating Eq. (2) in
the limit a → ∞ [35] under the mean-field approximation,
we obtain analytical forms for the effective interaction
potential, ueffðrÞ, of an effective one-component system
(EOC) in equilibrium whose structure is equivalent to that
of the nonequilibrium monodisperse system,

ueffðrÞ ¼
P

i;j¼b;sðDi þDjÞxixjuijðrÞ
2
P

i¼b;sDixi
; ð3Þ

constituted by weighted means of the individual pair
potentials (where xs ¼ x and xb ¼ 1 − x). Using the effec-
tive potentials in equilibriumDFTof the EOCwe can indeed
match the nonequilibrium profiles at high rates, cf.
Figs. 1(c). Interestingly, the effective potentials depend
on the particle diffusivities, reflecting the nonequilibrium
origin in their derivation. This behavior for a → ∞ is an
intrinsic property of the switching liquid and also holds in
bulk, see Ref. [35] and as we will show below.
Activity also has important repercussions on the wall

osmotic pressure in the active steady state. Figure 2(a)
displays βPwallσ

3
s ¼ ρTð0Þσ3s as a function of a for systems

S1 and S2. Both systems exactly satisfy the contact wall
theorem for a ¼ 0, i.e., the pressure at the wall agrees with
the bulk pressure βPbulk ¼ ρT þ 1

2
ρ2Tπ

3=2
P

i;j xixjϵijσ
3
ij.

However, increasing a yields a systematic departure from
this behavior, as the pressure at the wall decreases mono-
tonically until it reaches an asymptotic limit for a → ∞,
described by the equilibrium pressure of an EOC interacting
with effective potentials Eq. (3). Consequently, active
interaction switching tunes the bulk pressure. The corre-
sponding reduced adsorption of both components, defined as
Γ0
i ¼

R
∞
0 ðρiðzÞ=ρbulki − 1Þdz, is depicted in Fig. 2(b). The

behavior of big and small particles is very different for
nonactive systems, as Γ0

b > 0 (adsorption to the wall) and
Γ0
s < 0 (depletion from the wall) for a ¼ 0. However, the

difference between Γ0
b and Γ0

s substantially decreases for
increasing rate a, whereas already for a > 0.03 they con-
verge to a common value according to the monodisperse
behavior.
All these results can be rationalized as follows: If a ≪ 1

the switching events are rare and the diffusive fluxes are
still able to preserve the distinction between both compo-
nents. However, for a ≫ 1 many switching effects occur
during the characteristic diffusive time τ0 ¼ σ2s=Ds, so
particles do not have enough time to rearrange by diffusion,
and they tend to experience the same effective interparticle
interaction given by Eq. (3).
These arguments suggest that activity should also

affect the inhomogeneous distribution of an equilibrium
phase-separated mixture, which we consider in the follow-
ing. We select a mixture with ϵbb ¼ ϵss ¼ 2, ϵbs ¼ 1.888,
σb ¼ 1.504σs, and σbs ¼ 1.277σs. This choice of interac-
tion parameters corresponds to a system that undergoes
fluid-fluid demixing above the critical point, located at
ρ�Tσ

3
s ¼ 1.647 and x� ¼ 0.7 [28,30]. We chose a total

number density of ρTσ
3
s ¼ 2.4 and x ¼ 0.5, which is

located well inside the unstable region (system S3). The
mixture is confined inside a spherical cavity (cell) of radius
R ¼ 5σs [32,33]. Confinement is attained through repulsive
external potentials given by βuexti ðrÞ ¼ Eiðr=RÞ10 for
r ≤ R and βuexti ðrÞ ¼ ∞ for r > R, with Eb ¼ Es ¼ 20.
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FIG. 1. Steady-state density profile of (a) big and (b) small
particles (system S1) near a hard wall for different values of the
activity, from a ¼ 0 (nonactive) to a ¼ 104. (c) Normalized
steady-state profiles, ρiðzÞ=ρbulki , of big and small particles
converge to the same form for a → ∞, described by the
equilibrium profile of an effective one-component (EOC) system
interacting with ueffðrÞ given in Eq. (3).
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The top-left plot of Fig. 3 shows the equilibrium (a ¼ 0)
density profiles for system S3, clearly exhibiting fluid-fluid
phase separation in the cavity. Big particles are adsorbed or
“condensed” close to the external wall of the cavity,
whereas small ones are mainly distributed in the central
region. This segregation is caused by the effective depletion
attraction between the big particles and the wall induced
by the smaller component [44]. The degree of separation
between both components can be quantified by means
of the demixing order parameter, defined as δ ¼
f½4π�=½xNb þ ð1 − xÞNs�g

R
R
0 jxρbðrÞ − ð1 − xÞρsðrÞjr2dr,

δ ¼ 1 implies that big and small particles completely demix
into two nonoverlapping regions, whereas δ ¼ 0 means
complete mixing. For a ¼ 0, we find δ ¼ 0.93, indicating a
high degree of demixing.
The steady-state profiles for larger activities are depicted

in the other panels of Fig. 3 up to a ¼ 103 (for details about
the time evolution see Ref. [35]). ρbðrÞ in the center of the
cavity increases progressively with activity, while the
height of the adsorption peak decreases. Conversely,
ρsðrÞ reduces in the central region, narrowing the depletion
layer of small spheres around the wall while propagating
interesting intermediate peaks. In other words, increasing a
induces an activity-driven mixing and modified micro-
structuring of both components. For activities above a ¼ 1,
both density profiles approach each other, and for large
a > 102 they converge to the result obtained with the EOC
system in equilibrium, that is, demonstrate complete

mixing. The transition from a phase separated to a mixed
fluid is clearly recognized in the inset of Fig. 3, where δ
plotted as a function of the activity tends to full mixing,
δ → 0, for a → ∞. This transition is gradual and centered at
a ¼ 1, which represents the inflection point separating
mixed and demixed states. These results suggest that
switching activity is a potential tool to dynamically control
the demixing state of mixtures.
Finally, in order to check also how activity modifies the

intrinsic structure of a phase-separating mixture (system
S3) in bulk, we combine the R-DDFT, Eq. (2), with
the test-particle route [45] (details in Ref. [35]). Figure 4
shows the resulting number-number structure factor,
SNNðqÞ ¼ 1þ ρT

P
i;j xixjĥijðqÞ, where ĥijðqÞ are the
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Fourier transforms of the pair distribution functions
hijðrÞ ¼ gijðrÞ − 1. For large a, the switching rate prevents
phase separation of the mixture, and SNNðqÞ corresponds to
the stable EOC, according to potential Eq. (3). However,
for a < 1 a peak appears at low q, which grows as a
decreases and shifts to smaller q values (larger wave-
lengths). For a ¼ 0.042, this peak reaches a significant
height, indicating the onset of phase separation and the
development of spatially extended microclusters. These
results corroborate that demixing of the intrinsic liquid (no
external potential) is dynamically regulated by switching
activity.
In summary, we demonstrated that active switching

of particle interactions has profound effects on the
inhomogeneous microstructure of colloidal suspensions.
In particular, increasing activity suppresses the phase
separation of in-equilibrium unstable systems inside a
cellular confinement, inducing a gradual mixing of the
two components. This effect may be exploited for a
nonequilibrium control of the degree of demixing and
have implications for liquid-liquid phase separation, con-
densation, and transient microstructuring in biological and
synthetic functional cells [15,16] or nonequilibrium
material design [9,10,17]. Our model is idealized but we
believe the qualitative effects of interaction switching to be
robust across different systems and interactions, as can be
rationalized generally from the analytical slow and fast
switching limits. As possible simple experimental realiza-
tions, we believe active colloidal hydrogels [8] or vesicles
[11,12] are appropriate (where active size switching can be
induced by chemical background reactions or active cytos-
keleton dynamics), or, alternatively, well-defined solutions
of proteins with actively (fuel-driven) switching conforma-
tions [5].
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