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We present a microscopic theory of the neutral collective modes supported by the non-Abelian fractional
quantum Hall states at filling factor 5=2. The theory is formulated in terms of the trial states describing the
Girvin–MacDonald–Platzman mode and its fermionic counterpart. These modes are superpartners of each
other in a concrete sense, which we elucidate.
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Introduction.—The experimental discovery of fractional
quantum Hall states has stimulated the development of
the first quantized approach to strongly interacting many-
body problems. The model state introduced by Laughlin
has been extremely successful in describing qualitative
features of fractional quantum Hall phases as quantum
fluids with fractionally charged excitations [1]. Shortly
after Laughlin’s work, Girvin, MacDonald, and Platzman
(GMP) developed a theory of the neutral collective exci-
tation (known as the magnetoroton) supported by the
Laughlin phase [2]. This collective mode has been
observed in the Raman scattering experiments [3,4].
GMP estimated the value of various gaps and computed
the entire dispersion curve of the mode. It was later found
[5] that the dispersion curve is very accurate at long
wavelengths but breaks down at the magnetic length scale.
The GMP theory relies on the fact that in a strong magnetic
field it is possible to neglect the transitions to higher
Landau levels (LLLs) and work in the restricted Hilbert
space of lowest LLL states. After the LLL projection, the
density operators no longer commute with each other
and instead form the algebra of area-preserving diffeo-
morphisms, W∞. This algebra plays a central role in the
GMP computations of the dispersion of the mode.
Moore and Read (MR) introduced a trial state [6] that

describes qualitative properties of a quantum Hall plateau
that forms at the filling fraction ν ¼ 5

2
[7]. This construction

predicts that the state has non-Abelian topological order
and the fractionally charged excitations with electric charge
e=4. Recently, there has been a resurgence of interest in the
5
2
state after the first measurement of the thermal Hall

conductance [8], which suggests the non-Abelian nature of
the state and the observation of the plateau at ν ¼ 5

2

in bilayer graphene [9]. Regarding collective modes,
the construction of GMP applies equally well to the
Moore–Read state, and the corresponding magnetoroton
mode is expected. Greiter, Wen, and Wilczek (GWW) [10]

proposed that due to the paired nature of the MR state, there
should be another collective mode corresponding to break-
ing a Cooper pair. Subsequent numerical work has shown
that there are indeed two collective modes present in the
spectrum of a Hamiltonian, which supports the MR state as
its ground state [11–16]. Reference [13] has used Jack
polynomials to construct a series of trial states that
accurately describe the fermionic mode. However, a simple
and intuitive construction of the trial state a lá GMP has
been lacking.
In this Letter we use an auxiliary superspace formalism

to construct the GMP and GWW trial states in a uniform
fashion. We compute the gap function of the neutral
fermion mode. Within this framework, it can be made
precise that the two modes are superpartners of one another.
Additionally, we make a connection between the conformal
field theory (CFT) construction of the trial states and the
collective neutral modes.
The GMP mode.—We start with a brief review of the

single mode approximation developed by GMP. We are
interested in approximating an excited collective mode of a
two-body Hamiltonian, projected to the lowest LLL

H ¼
Z

d2qVqρ̄−qρ̄q; ð1Þ

where Vq is the Fourier transform of the interaction
potential and ρ̄k is the (normal ordered) density operator
projected to the lowest LLL [17]

ρ̄k ¼
XNel

i¼1

e−ik̄∂i e−ði=2Þkzi ; ð2Þ

where we have set the magnetic length l to unity. Projected
density operators satisfy the W∞ algebra
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½ρ̄k; ρ̄q� ¼ fðk;qÞρ̄kþq; fðk;qÞ ¼ 2ieðk·q=2Þ sin
�
k× q
2

�
:

ð3Þ

The GMP mode is a projected density wave

jki ¼ ρ̄kj0i; ð4Þ

where j0i is the exact ground state of H. The particular
form of the ground state j0i depends onH but plays no role
in the construction. The energy of the GMP mode is given
by [2]

ΔGMPðkÞ ¼
hkjHjki
hkjki ¼ f̄ðkÞ

s̄ðkÞ ; ð5Þ

where f̄ðkÞ and s̄ðkÞ are the oscillator strength and the
projected static structure factor (SSF), respectively:

f̄ðkÞ ¼ 1

2
h0j½ρ̄−k; ½H; ρ̄k��j0i; s̄ðkÞ ¼ h0jρ̄−kρ̄kj0i: ð6Þ

Quite a lot is known about the projected SSF for various
quantum Hall states [2,18–33]. For chiral trial states the
small momentum expansion of the SSF takes the form

s̄ðkÞ ¼ s4jkj4 þ s6jkj6 þ � � � ; ð7Þ

where s4 ¼ jS − 1j=8 is determined by the Wen–Zee shift
[34], and s6 is determined by the shift and central charge
[26,35]. Under more general conditions, the long wave
expansion of the SSF still starts with jkj4. The oscillator
strength depends on the microscopic details, but given the
general structure of SSF, the long wave expansion must
take the form f̄ðkÞ ¼ f4jkj4 þ � � � in order to ensure the
finite value of ΔGMPðk ¼ 0Þ. The general expression for
f̄ðkÞ is

f̄ðkÞ ¼ 4

Z
d2qVq

�
sin

�
k × q
2

��
2

Fðq; kÞ;

Fðq; kÞ ¼ ek·qs̄ðqþ kÞ þ e−ðjkj2=2Þs̄ðqÞ: ð8Þ

Thus, the gap function ΔðkÞ is determined by the projected
SSF and the interaction.
Trial states on a superplane.—In this section we will

introduce the auxiliary superspace construction—the main
technical tool employed in this Letter. We will make use of
the quantum Hall problem formulated on a superplane
[36,37], which unifies bosonic Laughlin and fermionic
Moore-Read states into a single object [38].
The superplane R2j2 is characterized by two sets

of coordinates: bosonic z, z̄, and fermionic (i.e., anti-
commuting) θ, θ̄. Every electron “living” on a superplane is
characterized by such a pair of (holomorphic) coordinates:

ðzi; θiÞ. Many-body super-Laughlin state of electrons is
given by

ΨsL ¼
Y
i<j

ðzi − zj − θiθjÞ2e−
PNel

i¼1
ðjzij2=4Þ: ð9Þ

The quickest way to obtain this state is to generalize the
Moore–Read construction to the superplane. To do so we
consider the Uð1Þ2 × Ising conformal field theory and
define a superfield

Φðz; θÞ ¼ ei
ffiffi
2

p ½ϕðzÞþθψðzÞ� ¼ ei
ffiffi
2

p
ϕðzÞ½1þ i

ffiffiffi
2

p
θψðzÞ�; ð10Þ

where ei
ffiffi
2

p
ϕðzÞ is the charge 1 bosonic vertex operator and

ψðzÞ is the Majorana fermion. Then the super-Laughlin
state is obtained as a superconformal block:

ΨsL ¼
�YNel

i¼1

Φðzi; θiÞQ
�
; ð11Þ

where Q is the background charge operator that ensures
nonvanishing of the correlation function [6]:

Q ¼ exp

	
−i

Z
d2z½ρ0

ffiffiffi
2

p
ϕðzÞ þ λðz; z̄ÞψðzÞ�



: ð12Þ

Here λ is a source for ψ that can be chosen to supply the
proper fermion parity in correlators. When Nel is an even
number, the construction reduces exactly to the state (11).
When Nel is odd, we choose λðz; z̄Þ to be supported on a
line that encircles all of the electrons.
We will concentrate on the evenNel case first and discuss

the odd case later. Remarkably, the Moore–Read state is the
highest component [39] of the super-Laughlin state (11)

ΨMR ¼
Z YNel

i¼1

dθiΨsL ¼ Pf

�
1

zi − zj

�
Δ2e−

PNel
i¼1

ðjzij2=4Þ;

ð13Þ

where Δ ¼ Q
i<jðzi − zjÞ is the Vandermonde determinant

and PfðMijÞ is the Pfaffian of the matrix Mij. This identity
can be seen by Taylor expanding (9) in θ. The integration
over all θi picks out the set of terms linear in all θi, yielding
the Pfaffian factor that automatically comes out anti-
symmetrized. We are led to a natural strategy. Since the
Moore–Read state is much simpler before taking the θ
integral, then it is easier to perform various computations
on the superplane first and integrate over θ in the end. Due
to the anticommuting nature of θ variables, we will always
obtain fully antisymmetric wave functions.
Density on a superplane.—We turn to the neutral

collective modes. It is natural to consider the density operator
on a superplane (or superdensity operator) defined as
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ϱðz; θÞ ¼
XNel

i¼1

δðz − ziÞδðθ − θiÞ: ð14Þ

Using the fact that Grassmann δ function of a complex
variable θ is quadratic,

δðθ − θiÞ ¼ ðθ − θiÞðθ̄ − θ̄iÞ; ð15Þ
we can expand the superdensity ρðz; θÞ as

ϱðz; θÞ ¼ rðzÞ þ θ̄ηðzÞ þ θη⋆ðzÞ þ θθ̄ρðzÞ: ð16Þ

Here we introduced the following operators

ηðzÞ ¼
XNel

i¼1

θiδðz − ziÞ; η⋆ðzÞ ¼
XNel

i¼1

θ̄iδðz − ziÞ; ð17Þ

rðzÞ ¼
XNel

i¼1

θiθ̄iδðz − ziÞ: ð18Þ

The operators η and η⋆ should be viewed as spin-1=2
superpartners of the bosonic density ρ. The superpartners
transform into each other as follows. We define superspace
derivatives

D ¼ ∂θ − θ∂z; D̄ ¼ ∂ θ̄ − θ̄∂ z̄: ð19Þ

These induce an action on the superdensity

δϱðz; θÞ ¼ −ϵDϱðz; θÞ; δ̄ϱðz; θÞ ¼ −ϵ̄ D̄ ϱðz; θÞ; ð20Þ

which leads to the following set of transformation laws

δr ¼ ϵη⋆; δη ¼ −ϵρ; δη⋆ ¼ −ϵ∂r; δρ ¼ ∂ηϵ;
ð21Þ

δ̄r ¼ −ϵη; δ̄η ¼ ϵ̄ ∂̄ r; δ̄η⋆ ¼ ϵ̄ρ; δ̄ρ ¼ −ϵ̄ ∂̄ η⋆:
ð22Þ

We take the Fourier transform with respect to both even
and odd coordinates. The LLL projected superdensity
operator is then given by

ρ̄k;ϰ ¼
XNel

i¼1

e−ik̄∂i e−ði=2Þkzie−ði=2Þϰθi e−ði=2Þϰ̄θ̄i ð23Þ

¼ ρ̄k −
i
2
ϰη̄⋆k −

i
2
ϰ̄η̄k þ

1

4
ϰ̄ϰr̄k ð24Þ

where ϰ is the odd momentum (the Fourier image of θ). We
emphasize that bars on top of the operators indicate the
LLL projection. Note that η̄†k ¼ η̄⋆−k since η̄k is a complex
Grassmann operator.
Components of the superdensity operator form a non-

trivial superalgebra given by the following relations
together with Eq. (3):

½ρ̄k; η̄q� ¼ fðk; qÞη̄kþq; ½ρ̄k; η̄⋆q � ¼ fðk; qÞη̄⋆kþq; ð25Þ

fη̄k; η̄⋆qg ¼ fðk; qÞr̄kþq; ½r̄k; ρ̄q� ¼ fðk; qÞr̄kþq; ð26Þ

fη̄k; η̄qg ¼ fη̄⋆k ; η̄⋆qg ¼ ½r̄k; r̄q� ¼ 0; ð27Þ

where fðk; qÞ is given by Eq. (3).
Collective modes.—The collective modes (both bosonic

and fermionic) on top of the Moore–Read state are given by
a single expression:

Ψk;ϰ ¼
Z �YNel

i¼1

dθi

�
ρ̄k;ϰΨsL: ð28Þ

To get some insight into the structure of Ψk;ϰ we first
assume that Nel is even. Then the odd part of Ψk;ϰ vanishes
because the superconformal block cannot involve an odd
number of fermions. Setting ϰ ¼ ϰ̄ ¼ 0, we get

ΨGMPðkÞ≡Ψk;ϰ¼0 ¼ ρ̄kΨMR; ð29Þ

where ρ̄kΨMR is the standard GMP mode on top of the
MR state.
When Nel is odd, the θ integral of ΨsL itself vanishes

identically since we are short of one θ (the number of θ s in
the wave function is even by construction). However the
integral in (28) does not vanish since ρ̄k;ϰ can contribute an
additional θ and ensures that the integral does not vanish at
the leading order in ϰ. In fact, it is the odd operator η̄k that
creates the mode in the superspace. Since η̄k is a super-
partner of ρ̄k, the two collective modes are superpartners.
Evaluating the integral over θ and setting ϰ̄ ¼ 0, we find

the following trial state:

Ψk;ϰ ¼ −
i
2
ϰ
XNel

j¼1

ð−1Þjþ1fj½e−ik̄∂je−
i
2
kzjΔ2�e−

PNel
i¼1

ðjzij2=4l2Þ ≡ ϰΨNFðkÞ; ð30Þ

fj ¼ A
�

1

z1 − z2
; � � � ; 1

zj−2 − zj−1

1

zjþ1 − zjþ2

; � � � ; 1

zNel−1 − zNel

�
; ð31Þ
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whereA stands for antisymmetrization. fj is the Pfaffian of
a matrix Mij ¼ ð1=zi − zjÞ, where zi are the coordinates
of Nel − 1 out of Nel electrons, with jth electron missing.
The Vandermonde determinant involves all Nel electrons.
The wave function (30) boosts the jth electron and pairs the
remaining electrons, the linear combination ensures that no
electron is different from the others. The odd momentum ϰ
serves as a bookkeeping tool and can be discarded in the
final expression.
The trial state ΨNFðkÞ is the first main result of the

present Letter. We will explore various properties of this
state and its construction in the remainder of the Letter.
First, we would like to make contact with the Jack

polynomial construction of [13,40]. At zero momentum
k ¼ 0, the state ΨNFðk ¼ 0Þ coincides with the Pfaffian
state at odd particle number (see Ref. [40] for an explicit
formula). It also coincides with the highest component of
Eq. (11). This state costs higher energy [11,12], compared
to the ground state at even particle number. Equation (30)
tells us that at k ¼ 0 the wave function is a linear super-
position of MR states with Nel − 1 electrons and an extra
charge e quasihole placed at the position zi. Complete
antisymmetrization over zis then ensures that the wave
function describes Nel fermions. Next, we can analyze
Eq. (30) at small k. To do so we expand ΨNFðkÞ in Taylor
series in k, so that ΨNFðk ¼ ΨNFðk ¼ 0Þ þ k̄2Ψ3=2 þ � � �.
Here, Ψ3=2 is a polynomial in zi, which up to normalization
coincides with the spin-3=2 state of Ref. [13,40], given (up
to the Gaussian factor) by

Ψ3=2 ¼ Δ2A
�

1

z1 − z2
; � � � ; 1

z2N−1 − z2N

1

ðz1 − z2Nþ1Þ2
�
:

ð32Þ
We conclude that ΨNFðkÞ is a trial state for a collective
mode that agrees with this (Jack polynomial) construction
at long wavelengths.
Gap function.—We now discuss the gap function of the

neutral fermion mode, which is given by

ΔNFðkÞ ¼
hkoddjHjkoddi
hkoddjkoddi

¼ f̄oddðkÞ
ζ̄ðkÞ ; ð33Þ

where hfzigjkoddi ¼ ΨNFðkÞ and ζ̄ðkÞ is the norm of jkoddi.
Curiously, ζ̄ðkÞ can be evaluated in the superspace as a two-
point function of η̄k

ζ̄ðkÞ ¼
Z

½dθ�½dθ̄�½dz�½dz̄�Ψ�
sLη̄

⋆
−kη̄kΨsL ¼ h0jη̄⋆−kη̄kj0i;

ð34Þ
where ½dθ� ¼ dθ1dθ2;…; dθNel

. Presently, no analytic
results are available for the ζ̄ðkÞ.
The numerator, f̄oddðkÞ can be represented in terms of a

commutator and an anticommutator as follows:

f̄oddðkÞ ¼
1

2
h0jfη̄⋆−k; ½H; ηk�gj0i: ð35Þ

The anticommutator appears because in order to use
k → −k symmetry we need to exchange η̄ and η̄⋆, which
anticommute. Remarkably, the superalgebra (25)–(27) can
be utilized to express foddðkÞ in terms of the two-point
functions (similar to the GMP mode):

f̄oddðkÞ ¼ 4

Z
d2qVq

�
sin

�
k × q
2

��
2

Foddðk; qÞ; ð36Þ

Foddðk;qÞ ¼ ek·qζ̄ðkþ qÞ þ e−ðjkj2=2ÞᾱðqÞ; ð37Þ
where we introduced another two-point function:

ᾱðqÞ ¼ h0jρ̄−qr̄qj0i: ð38Þ
No analytic results are yet available for ᾱðqÞ. In principle,
one can compute any (Grassmann-even) two-point function
of the generators of the superalgebra (25)–(27). Only
the two-point function of bosonic densities—the static
structure factor—has been studied before.
Collective modes from CFT.—The superconformal

blocks are usefully organized as multivariate functions
on the superplane R2j2. One can cast the ϰ dependence as
the parameter for a supersymmetry transformation of the
background charge. The superfield Eq. (10) combines the
quasihole and electron operators. The Grassmann parity of
the background charge then correlates with that of the
product of charged operator insertions.
Infinitesimal superconformal transformations are para-

meterized by infinitesimal vector superfields

Vz ¼ vzðzÞ þ θvθðzÞ ð39Þ
that shift the superspace coordinates via (see for instance
[41,42])

δz ¼ vzðzÞ − iθvθðzÞ; δθ ¼ −ivθðzÞ þ 1

2
θ∂zvzðzÞ:

ð40Þ
Acting on fields, these transformations are generated by the
stress tensor supercurrent T zθ ¼ GzθðzÞ þ θTzzðzÞ via

T V ·O ¼ 1

2πi

I
C
dzdθVzT zθðz; θÞO ð41Þ

with the contour C surrounding O. A superfield O ¼
O0ðzÞ þ θO1ðzÞ of conformal weight h transforms as

δO0 ¼ −½vz∂z þ hð∂zvzÞ�O0 − vθO1

δO1 ¼ −
�
vz∂z þ

�
hþ 1

2

�
ð∂zvzÞ

�
O0

− ½vθ∂ þ 2hð∂zvθÞ�O0: ð42Þ
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Expanding in mode operators Gzθ ¼
P

n
1
2
Gnz−n−3=2,

Tzz ¼
P

n Lnz−n−2, and similarly for vz, vθ, one has

G1=2 ·O1 ¼ 2hO0; G−1=2 ·O0 ¼ O1;

G1=2 ·O0 ¼ 0; G−1=2 ·O1 ¼ L−1 ·O0 ¼ ∂zO0; ð43Þ

where the Laurent series is taken about O. The operators
L�1; L0; G�1=2 form a closed superalgebra OSpð2j1Þ.
We start by considering the CFT interpretation of the

traditional GMP mode. The long wave expansion of
the magnetoroton mode takes form ΨGMPðkÞ ¼ Ψ0ðzÞ þ
k̄2Ψ2ðzÞ þ � � �. The polynomial Ψ2ðzÞ is the spin-2 part of
the GMP mode. It coincides with spin-2 wave function Ψ2

defined in Refs. [13,40]. Ψ2ðzÞ can be also expressed in
terms of the Virasoro generators inserted in the conformal
block representation of the trial state (e.g., Moore–Read
state) as follows:

Ψ2ðzÞ ¼
XNel

i¼1

ðL2
−1Þi ·ΨMR; ð44Þ

where ðL−1Þi is the Virasoro generator acting on ith
insertion.
Next, we turn to the fermionic collective mode. The state

of an odd number of electrons, ΨNFðk ¼ 0Þ is given by

ΨNFðk ¼ 0Þ ¼
Z �YNel

j¼1

dθj

�XNel

i¼1

ðG1=2Þi ·ΨsL; ð45Þ

while the spin-3=2 state (which arises at the order ϰk̄2) is
given by

Ψ3
2
ðzÞ ¼

Z �YNel

j¼1

dθj

�XNel

i¼1

ðL2
−1G1

2
Þi ·ΨsL ð46Þ

(note that ðL2
−1G1=2Þi ¼ ðL−1G−1=2Þi when acting on ΨsL).

We regard these results as an indication of the utility of
(super)conformal methods in the analysis of collective
excitations of trial wave functions for fractional quantum
Hall states.
Conclusions.—We have investigated the collective neu-

tral excitations in the Moore-Read phase, which is the
candidate description for the ν ¼ 5

2
observed plateau. It was

shown that the two branches of collective excitations, at
least at small momentum, can be naturally constructed in
the auxiliary superspace formalism, which unifies the
bosonic Laughlin and fermionic Moore–Read states into
a single function, defined on a superspace. We have related
our construction to previous work on the collective modes
and found agreement, whenever such a comparison is
possible. The gap function of the neutral fermion mode
was expressed in terms of the norm of the neutral fermion
state at finite momentum. Finally, we have shown that the

trial states for both types of collective excitations can be
constructed by inserting OSpð2j1Þ (super-)Virasoro gene-
rators in the CFT representation of the trial states.
Our work suggests many new directions. First, it may be

possible to extend the recently proposed effective bimetric
theory of the collective spin-2 mode [43–45] to include the
spin-3

2
fermionic mode. If the splitting between these modes

is sufficiently small relative to the gap, the effective theory
should have an emergent, albeit softly broken super-
symmetry. These ideas may also lead to the development
of the matrix model for the MR state [46]. Second, it would
be very interesting to revisit the plasma map for the MR
state [47–49]; the plasma corresponding to Eq. (9) “lives”
in the superspace and seems to have a simple structure.
Third, the CFT approach may be useful to study the
collective modes on top of the Read–Rezayi [50] states,
which may support a richer collection of neutral modes.
Finally, it is conceivable that superspace techniques such as
[51,52] can be utilized to directly compute s̄ðkÞ, ζ̄ðkÞ and
ᾱðqÞ for the Moore–Read state, neither of which is known
analytically via a direct computation.
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