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A central idea in strongly correlated systems is that doping a Mott insulator leads to a superconductor by
transforming the resonating valence bonds (RVBs) into spin-singlet Cooper pairs. Here, we argue that a
spin-triplet RVB (tRVB) state, driven by spatially, or orbitally anisotropic ferromagnetic interactions can
provide the parent state for triplet superconductivity. We apply this idea to the iron-based superconductors,
arguing that strong on site Hund’s interactions develop intra-atomic tRVBs between the t2g orbitals. On
doping, the presence of two iron atoms per unit cell allows these interorbital triplets to coherently delocalize
onto the Fermi surface, forming a fully gapped triplet superconductor. This mechanism gives rise to a
unique staggered structure of on site pair correlations, detectable as an alternating π phase shift in a
scanning Josephson tunneling microscope.
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Thirty years ago, Anderson proposed [1] the intriguing
idea that the resonating valence bonds (RVBs) of a spin
liquid could, on doping, provide the fabric for the develop-
ment of unconventional superconductivity. A key aspect of
the RVB theory is that it departs from weak-coupling
approaches to superconductivity, positing that instead of a
pairing glue, superconductivity develops from the entangled
pairs already present in a spin liquid. RVB theory provides a
natural account of the connection between d-wave pairing
and antiferromagnetism [2] in almost-localized systems,
a connection that has proven invaluable to the understanding
of many families of superconductors, from the cuprate
superconductors, to their miniature cousins, the 115
heavy-fermion compounds [3].
However, to date, there is no counterpart of RVB

theory that applies to ferromagnetically correlated mate-
rials. There are a wide variety of unconventional super-
conductors which, to some extent or another, involve strong
ferromagnetic (FM) spin correlations. Examples include
uranium-based heavy fermion materials [4,5] that lie close
to a FM quantum critical point, candidate low-dimensional
triplet superconductors such as the Bechgaard salts [6],
twisted double bilayer graphene [7,8], and various
transition metal superconductors [9,10], notably the iron-
based and ruthenate superconductors, which like Hund’s
metals involve strong local FM correlations between
orbitals. Various papers have speculated that the Hund’s
interactions might provide the origin of the pairing in these
systems [11–16].
Is there a ferromagnetic analog to the RVB pairing

mechanism? Here we build on an observation [17] that
magnetic anisotropy in a ferromagnet plays an analogous
role to frustration in an antiferromagnet (AFM), generating

a fluid of triplet resonating valence bonds (tRVBs).
We propose that, like their singlet cousins, tRVB states
can, on doping, lead to the development of triplet pairing.
One of the exciting features of this idea is that tRVBs
can form within the interior of Hund’s coupled atoms,
which under the right symmetry conditions [15,18] can
coherently tunnel into the bulk to develop triplet super-
conductivity (Fig. 1) [19,20].
Consider an easy-plane FM interaction Hij¼−JS⃗i · S⃗jþ

ΔJSziS
z
j, (J > 0) between two spin-1=2moments S⃗i and S⃗j.

In the Heisenberg limit (ΔJ ¼ 0) and in the presence of a
small symmetry breaking Weiss field, the ground state is a
product state which lacks entanglement. Suppose the
magnetization points in the x direction, the product ground
state can then be written in terms of triplets,

FIG. 1. (a) Isolated tetrahedron in iron-based superconductors,
showing the two electrons forming a S ¼ 1 triplet in the t2g
orbitals. (b) Triplet resonating valence bond (tRVB) as the ground
state of a Hund’s metal atom. The blue and red colors reflect the
odd parity of the triplet pairs, while the red arrows denote the
quantization axis (d vector) of the m ¼ 0 triplet pair.
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j↑iiþ j↓iiffiffiffi
2

p j↑jiþ j↓jiffiffiffi
2

p ¼ j↑i↑jiþ j↓i↓ji
2

þj↑i↓jiþ j↓i↑ji
2

:

ð1Þ
An easy-plane anisotropy (ΔJ > 0) projects out the equal-
spin pairs on the right-hand side, stabilizing an entangled
spin-1 ground state with mz ¼ 0. In the corresponding easy-
plane ferromagnet, with Hamiltonian H ¼ P

ði;jÞHij, the
intersite couplings preserve the mz ¼ 0 structure of the
valence bonds, and the resulting ground state is a quantum
superposition of triplet pairs which retains its ferromagnetic
correlations, and may even exhibit long-range order [21,22].
Our interest in a tRVB ground state lies in its potential as

a pre-entangled parent state of a triplet superconductor. In
classic RVB theory, an antiferromagnetic superexchange
interaction, is decoupled in terms of singlet pairs [23]:

JS⃗i · S⃗j ≡ −
J
2
ðψ†

i↑ψ
†
j↓ − ψ†

i↓ψ
†
j↑Þðψ j↓ψ i↑ − ψ j↑ψ i↓Þ; ð2Þ

where we have used a fermionic representation of the spins,
S⃗j ¼ ψ†

jðσ⃗=2Þψ j. The corresponding relation for triplet
valence bonds is obtained by rotating the spin coordinate
system at site j through 180° about the z axis, which gives

− JAðSxi Sxj þ Syi S
y
j − Szi S

z
i Þ

≡ −
JA
2
ðψ†

i↑ψ
†
j↓ þ ψ†

i↓ψ
†
j↑Þðψ j↓ψ i↑ þ ψ j↑ψ i↓Þ; ð3Þ

demonstrating how xy anisotropy stabilizes a triplet pair.
The most direct application of the tRVB idea considers

an easy-plane Heisenberg ferromagnet: by analogy with the
singlet RVB pairing mechanism, doping with holes drives
the formation of a triplet superconductor. On a square
lattice, this scenario leads to a px þ ipy triplet super-
conductor, to be presented elsewhere. A more dramatic
possibility, in which i and j represent orbitals of a single
atom, permits us to apply the tRVB idea to Hund’s coupled
metals. Here an application of particular current interest is
as a theory for iron-based superconductors (FeSC).
The family of FeSC are characterized by high transition

temperatures with a fully gapped Fermi surface. The
presence of antiferromagnetic correlations and a marked
Knight shift has led to the long-held assumption that these
materials are spin singlet superconductors [9,24]. The
recent observation [25] of a robust ratio 2Δ=Tc ∼ 7.2
between the gap Δ and the transition temperature Tc across
a broad range of FeSC motivates the search for a common
pairing mechanism, one that is robust against the wide
spectrum of Fermi surface morphologies, and hence most
likely rooted in the local electronic structure of the iron
atoms. Here, we propose that these systems are tRVB
superconductors, with a fully gapped Fermi surface, an
anisotropic Knight shift and an alternating pair wave
function.

The symmetry properties of a Hund’s coupled triplet
superconductor were first considered by Anderson [15],
who observed that in systems with a center of inversion, the
odd-parity wave function of a triplet condensate prevents
on site triplet pairing unless the lattice has an even number
of atoms per unit cell, related to each other via inversion. In
this situation, the odd-parity nature of the condensate
means that the on site pair wave function reverses sign
when reflected through the center of inversion

hψaσðxÞψbσ0 ðxÞi ¼ −hψaσð−xÞψbσ0 ð−xÞi; ð4Þ

where a and σ are the orbital and spin indices, respectively.
The key structural feature of FeSC is an iron atom enclosed
in a tetrahedral cage of pnictogen or chalcogen atoms.
The tetrahedra are packed in a checker-board arrangement,
with a unit cell containing two iron atoms, separated by a
common center of inversion, satisfying this requirement.
We now show how tRVB predicts a condensate with the
above properties.
In the parent compound of the FeSC, each tetrahedron

contains two electrons within the three xz; yz, or xy orbitals
of the t2g level, Hund’s coupled into a S ¼ 1, L ¼ 1

manifold. Consider the “atomic” limit of an isolated iron
tetrahedron. Each pair of t2g orbitals shares a common
direction, for instance, the xz and yz orbitals share a
common z axis, which in the presence of spin-orbit
coupling causes [21] the Hund’s interactions to develop
an orbitally selective easy-plane anisotropy [Eq. (3)],

HI ¼ −2½ðJH þ JAÞS⃗xz · S⃗yz − 2JASzxzSzyzÞ
þ ðcyclic permutationsÞ�: ð5Þ

Each of the three interaction terms stabilizes a triplet pair
with zero spin component along a quantization axis
(“d vector”) normal to its easy plane [see Fig. 1(c)], thus
the xz and xy orbitals have d vector d̂ ¼ x̂.
With the convention a ∈ fxz; yz; xyg ¼ f1; 2; 3g,

the projected angular momentum operator within the t2g
subspace is ðLaÞbc ≡ −iϵabc. Defining the triplet pair
creation operators Ψ†

ab ≡ ψ†ðLaσbÞψ̄†, a; b ¼ 1; 2; 3,
where ψ̄†≡iσ2ðψ†ÞT , Eq. (5) can be written as
HI ¼ −

P
ab gabΨ

†
abΨab, with gab¼ 1

4
ðJHþJAδabÞ. In this

way, we see that an anisotropy JA>0 splits off a ground
state manifold of triplet pairs in which the orbital angular
momenta and the spin quantization axis are
aligned, Ψ†

aaj0i ¼ ψ†ðσaLaÞψ̄†j0i.
The spin-orbit coupling HSL ¼ −λL⃗ · S⃗ causes the

triplet valence bonds to resonate between orbitals, giving
rise to a tRVB ground state jtRVBi ¼ P

ab ΛabΨ†
abj0i

[see Fig. 1(b)]. Note that within the t2g multiplet, the
projected spin orbit interaction has a reversed coupling
constant, with λ > 0, favoring Lþ S ¼ 2 configurations.
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The structure of the resulting energy levels is modeled
by a crystal field Hamiltonian given by H ¼ −λðL⃗ · S⃗Þ−
αðJ4x þ J4y þ J4zÞ þ ηJ2z , where J ¼ Sþ L is the total angu-
lar momentum, α ∼ JA, while η quantifies the tetragonal
anisotropy of the environment. The simplest tRVB
ground state, where Λab ¼ δab is a unit matrix, develops
for the wrong sign of the spin-orbit coupling λ < 0. Two
other tRVB states with Λab ¼ diagð1;−1; 0Þ and Λab ¼
diagð1; 1;−2Þ are stabilized for λ > 0, [21], where the latter
becomes the unique ground state in the presence of a
tetragonal anisotropy η > 0, see Fig. 1(b).
When the tetrahedra are brought together to form a

conductor, charge fluctuations allow the escape of atomic
triplet pairs into the conduction sea. We shall assume that
the interactions present in the isolated tetrahedra are
preserved in the metallic state that now develops.
Imagine a lattice where the xy orbitals are weakly hybrid-
ized with the xz=yz orbitals at neighboring sites (we denote
this amplitude as t7). An on site valence bond between an
xz and xy orbital can tunnel to the neighboring site in a two
step process: an xz electron first hops to a neighboring xy
orbital, forming an intersite, intraorbital triplet pair, after
which the xy electron follows suit and hops onto the
neighboring site to reassemble the intra-atomic triplet bond.
In fact, the electrons can tunnel in either order and the
resulting tumbling motion of the tRVB causes its amplitude
to alternate at neighboring sites. If this process becomes
coherent, it leads to a staggered anomalous triplet pairing
amplitude [see Eq. (4)] ΔðxÞ ¼ −Δð−xÞ as envisioned in
[15] [see Fig. 2(a)]. For this motion to be sustained
coherently, there must be two atoms per unit cell. To
understand how this works in the FeSC, we note there
is an additional nonsymmorphic symmetry [26], under

which the lattice is invariant under a glide and mirror
reflection through the plane. The opposite parities of the
xy and xz=yz orbitals under glide reflection, means
that the interorbital tunneling amplitude t7 alternates
[see Fig. 2(b)]. When the xz=xy and yz=xy pairs tunnel
left or right into the conduction sea, they do so with
opposite amplitudes, causing the intersite, intraorbital
triplet pairs to coherently condense in the same direction.
This permits the phase-alternating tRVB pairs to coherently
escape onto the Fermi surface [see Fig. 2(c)], activating
a logarithmic Cooper divergence in the pair susceptibility.
The nonsymmorphic symmetry of the FeSC allows us to
absorb the staggered hopping into a staggered gauge
transformation of the xz=yz orbitals [27], ψxz=yzðjÞ →
ð−1Þjxþjyψxz=yzðjÞ. This transformation unfolds the
Brillouin zone and allows to treat each iron atom on an
equal footing.
Following [1] we introduce the simplest tRVB wave

function as the Gutzwiller projection of a BCS-like wave
function

jtRVBi ¼ P̂G

Y
k

exp fψ†
k½L⃗ðkÞ · σ⃗�ψ̄†

−kgj0i: ð6Þ

Here PG is the Gutzwiller projector to n < 2 electron per

site. The functions L⃗ ¼ P
g Λ⃗gðkÞλg with g ¼ 1;…; 8 can

be expanded in the eightfold space of Gell-Mann matrices
which span the t2g multiplet. The triplet character of the
condensate means that Lð−kÞ ¼ −LTðkÞ, so the three
antisymmetric λg ∈ fLag3a¼1 matrices combine with even
parity functions ΛsðkÞ ¼ Λsð−kÞ to describe the on site,
orbitally antisymmetric pairing, while the five symmetric
λg, combine with odd-parity p-wave functions ΛaðkÞ ¼
−Λað−kÞ, to describe the tRVBs that have escaped to the
Fermi surface.
To calculate the properties of the tRVB wave function,

we adopt a Gutzwiller mean field approach, assuming that
the action of the microscopic Hamiltonian beneath the
projection operator PG can be modeled by an appropriate
renormalization of hopping matrix elements in a mean-field
Hamiltonian. A microscopic rationale for these renormal-
izations can be obtained from a slave boson treatment of the
unprojected Hamiltonian, along the lines of RVB theory
[23,28]. Here we concentrate on the weak-coupling Cooper
instability that arises from the renormalized Hamiltonian.
Motivated by our discussion of the isolated tetrahedron, we
now rewrite the Hund’s interaction, Eq. (5) in the form of a
BCS theory

HI ¼
X
x;ab

�
1

gab
Δ̄abΔab þ ðΨ†

abΔab þ H:c:Þ
�
: ð7Þ

For t2gmaterials, the states at the Fermi surface are composed
of three component Bloch wave functions u⃗n;k which are
eigenstates of the kinetic term HðkÞu⃗n;k ¼ ϵnðkÞu⃗n;k.

FIG. 2. Schematic showing (a) how tunneling of a triplet
valence bond between two iron atoms leads to “tumbling”
motion that reverses the on site triplet pair amplitude Δ on
neighboring iron atoms, (b) the alternation in the sign of
interorbital hopping t7 and on site triplet pairing, (c) how the
asymmetric left and right tunneling permits triplet pairs to align in
the same direction between sites, allowing them to coherently
condense into a p-wave state on the Fermi surface.
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On the Fermi surface, the band-diagonal matrix element of
the gap function is given by d⃗nk · σ⃗, where the d vector is
dank ≡ Δabðu⃗Tn;−kLbu⃗n;kÞ ¼ −iΔabðu⃗n;−k × u⃗n;kÞb. The d
vector vanishes if the Bloch wave function u⃗n−k ¼ u⃗nk is
symmetric, since u⃗n;k × u⃗n;k ¼ 0. Fortunately, the non-
symmorphic character of the lattice mixes the xy and
xz=yz orbitals, so that u⃗nk ≠ u⃗n−k, which allows the d vector
to be finite.
The simplest mean-field theory, corresponding to Δab ¼

Δdiagð1; 1;−2Þ, models the iron-based superconductors as
a two-dimensional conductor with Hamiltonian

HMF ¼
X
k

ψ̃†
k½HðkÞτ3þΔðσ1L1 þ σ2L2 − 2σ3L3Þτ1�ψ̃k

þ VjΔj2
g

: ð8Þ

Here ψ̃k is a Nambu spinor in the space of orbital, spin and
charge (isospin) space. The pairing term ðσ1L1 þ σ2L2Þτ1
term retains the essential tRVB pairing components
that mix the xy and xz=yz orbitals at the Fermi surface
and is sufficient to gap out the Fermi surface. In our
two-dimensional model the component σ3L3τ1 has no
weak-coupling support on the Fermi surface but induces
interband pairing between xz and yz orbitals [13]. The term

HðkÞ ¼ ϵk þ ϵ⃗k · γ⃗

¼

0
B@

ak gk ipkx

gk bk ipky

−ipky −ipkx ek

1
CA ð9Þ

describes the band dispersion [27], where ak¼
2t1cxþ2t2cyþ4t3cxcy−μ, bk¼2t2cxþ2t1cyþ4t3cxcy−μ,
gk¼4t4sxsy, pkx ¼2t7sxþ4t8sxcy, pky ¼ 2t7sy þ 4t8sycx,
and ek ¼ 2t5ðcx þ cyÞ þ 4t6cxcy − μþ δxy, and we have
employed the short-hand notation cl ≡ cos kl and sl ¼
sin kl (l ¼ x, y).
Although the pairing in this mean-field theory is uni-

form, if we undo the gauge transformation of the xz=yz
states, the on site pairing between the xy and xz=xy states
acquires the staggered behavior predicted by Anderson.
Remarkably, even though this order parameter is staggered,
it induces a uniform gap on the Fermi surface, with
a pair susceptibility that is logarithmically divergent at
low temperatures.
Figures 3(a) and 3(b) display the spectrum calculated

from the mean-field theory, Eq. (8), using the tight binding
parameters of Ref. [27] and t8 ¼ −t7=3. The ground state
develops an anisotropic, yet full gap on the Fermi surface,
which becomes increasingly isotropic with the introduction
of spin-orbit coupling. Historically, the observation of a full
gap [29–31] and the presence of a finite Knight shift in all
field directions led to an early rejection of the idea of triplet

pairing in FeSC. However, the calculated Knight shift,
obtained by summing both Fermi surface and interband
components of the total spin and orbital susceptibility
[Fig. 3(c)], shows a marked loss of spin susceptibility
for all field directions, in accord with experiment. We note
that in a two-dimensional model, the staggered hopping t7
that delocalizes the pairs is only present in the basal plane.
When motion in the c axis is included, the additional
staggered hopping along the c axis will now hybridize the
xz=yz orbitals, introducing an additional pz component to
the condensate, further reducing the predicted anisotropy.
Various other aspects of the tRVB theory of pairing in

FeSC deserve discussion. First, since the Hund’s triplet
pairing occurs locally on the iron atom (unlike, s� pairing),
tRVB accounts for intra-atomic Coulomb repulsion without
relying on a cancellation between electron and hole pockets
[33]. Second, because this pairing is local, it is expected to
be moderately robust against the pair breaking effects of
impurity scattering. Microscopically, disorder generates
nonzero vertex corrections to the local pair which partially
cancel the disorder induced self-energy [21], thereby
reducing the pair-breaking effects of disorder. Third, there
are multiple sign changes of the triplet d vectors on and in
between the various Fermi surfaces [Fig. 3(d)]. The finite
winding number of the d vector around each pocket may

FIG. 3. (a) The size of the gap along a cut passing high-
symmetry points in the Fermi surface (FS), for Δ ¼ 6.2 meV
for λSO ¼ 0 and λ ¼ 10 meV. The inset shows the folded Brillouin
zonewith k� ¼ ðkx � kyÞ=2 and X̃ ¼ ðπ; 0Þ and M̃ ¼ ðπ=2; π=2Þ.
(b) The size of the gap on the FS for Δ ¼ 6.2 meV and
λSO ¼ 10 meV. (c) The normalized spin-susceptibility at the
transition for Δ ¼ 6.2 meV and λSO ¼ 10 meV [32]. (d) The
winding of the d⃗ðkÞ vector along the FS for λSO ¼ 0 illustrates
p-wave (Eu) pairing. Note that d⃗ vector is entirely in the plane in
this case.
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lead to interesting topological behavior [34,35]. At the
same time the relative sign between d vectors on electron
and hole pockets gives rise to quasiparticle coherence
factors which closely resemble those of an sþ− super-
conductor with important consequences for quasiparticle
interference (QPI) [36–39] and neutron spin resonance
measurements. Specifically, the dominant Fermi surface
contribution to the antisymmetrized tunneling density of
states at wave vector q is proportional to the Fermi surface
(FS) average h1 − d̂nðkþ qÞd̂mðkÞik∈FS, with d̂ ¼ d⃗=jd⃗j.
Features in this observable were previously interpreted as
evidence for s� pairing, but our calculation suggests that
tRVB is also consistent. A more detailed expression and a
discussion of a similar feature on the subgap spin resonance
[40] are relegated to Ref. [21].
A key feature of tRVB is the prediction that Hund’s

pairing will give rise to a unique staggered structure of the
on site pair correlations. To observe this phenomenon in
FeSC and other candidate materials, we propose a novel
STM experiment, a “Josephson tunneling microscope” that
employs two superconducting tunneling tips of the same
tRVB material, one fixed, the other mobile, connected to
form a SQUID with the sample. The alternation of the
superconducting phase between neighboring iron atoms is
predicted to lead to a staggered π-junction behavior as the
mobile tip scans across the material [21].
Finally, we mention the possible relevance of tRVB to

other superconductors of current interest. The recent dis-
covery of the heavy-fermion UTe2, which has an even
number of uranium atoms per unit cell, with likely triplet
superconductivity [41] is one promising example. Another
intriguing candidate material is magic angle double bilayer
graphene, where the valley degrees of freedom play the role
of orbitals, giving rise to Hund’s coupled interorbital triplet
pairing [42] on a moiré superlattice.
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