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A particle beam may undergo an anomalous spatial shift when it is reflected at an interface. The shift
forms a vector field defined in the two-dimensional interface momentum space. We show that, although the
shift vector at individual momentum is typically sensitive to the system details, its integral along a close
loop, i.e., its circulation, could yield a robust quantized number under certain conditions of interest.
Particularly, this is the case when the beam is incident from a trivial medium, then the quantized circulation
of anomalous shift (CAS) directly manifests the topological character of the other medium. We demonstrate
that the topological charge of a Weyl medium as well as the unconventional pair potentials of a
superconductor can be captured and distinguished by CAS. Our work unveils a hidden quantized feature in
a ubiquitous physical process, which may also offer a new approach for probing topological media.
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Quantized quantities are rare and always fascinating in
physics. Such quantities, e.g., the Hall conductivity in
quantumHall effect [1] and the circulation in superfluid [2],
are invariably considered as remarkable, because they
reveal deep physics and allow the rare chance of high
precision measurement. In this work, we reveal a new
member in an ubiquitous physical process: the interface
reflection.
In the simplest picture, a light beam reflected at a flat

sharp interface should follow the law of reflection, which
assumes that the reflected and the incident beams meet at
the same point on the interface. However, the wave nature
of light brings a twist to this simple picture: the reflected
beam may acquire an anomalous spatial shift from the
incident point, as illustrated in Fig. 1(a) [3]. The longi-
tudinal and the transverse components of this shift (defined
with respect to the incident plane) represent the well-known
Goos-Hänchen effect [4] and Imbert-Fedorov effect [5,6],
respectively. Remarkably, the analogous effects have also
been discovered in electronic scattering [7–19], and most
recently in Andreev reflection [20–22]. For the latter, the
shift occurs at a normal-metal–superconductor interface,
between the incident electron beam and the reflected hole
beam. These examples demonstrate that the effect is
general for both classical and quantum systems, so it has
been attracting broad interest [23–27].
Here, we unveil a hidden quantized feature of this

general effect. We construct a character, termed as the

circulation of anomalous shift (CAS), which is the integral
of the shift vector along a closed path in the interface
momentum space. We show that for incident medium
satisfying certain symmetries, CAS must take a quantized
value, analogous to the circulation in superfluid. This
quantization applies for a class of interesting cases. For
example, we consider the shift for a beam incident from a
trivial medium onto the interface with a Weyl medium, and
show that the quantized CAS characterizes the topological
charge of the Weyl point. As another example, we
show that the CAS for Andreev reflection at the inter-
face between a simple metal and a superconductor
can distinguish different superconducting pairing types.

(a) (b)

FIG. 1. (a) Schematic figure showing the anomalous spatial
shift l for a beam reflected at an interface. (b) l forms a vector
field in the domain S (where reflection occurs) in the interface
momentum kk space. The CAS κC is defined for any closed loop
C ∈ S.
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The quantized feature makes CAS a robust topological
quantity against perturbations. The findings here also
provide a new approach for probing nontrivial topological
or superconducting states.
Anomalous shift in interface scattering.—We start by

presenting a general formula for this shift. Consider the
setup in Fig. 1(a), where a flat interface between two media
is formed at the z ¼ 0 plane. A beam of particles Ψi

ki

incoming from the upper medium (referred to as the
incident medium) is scattered at the interface into a
reflected beam Ψr

kr and a transmitted beam Ψt
kt . The Ψ’s

are usually modeled by wave packets, and are required
to be confined in both real and momentum spaces. kα ðα ¼
i; r; tÞ denote their average momenta, and must share
the same conserved component kk in the interface (x-y)
plane. To analyze the scattering, the beam is expanded
using the scattering eigenstates. For instance, Ψi

ki
¼R

dk0wðk0 − kiÞψ i
k0 , where w is the profile of the beam

peaked at ki, and ψ i
k ¼ eik·rjuiki is the Bloch eigenstate of

the incident medium with juiki being the cell-periodic part.
The scattering of each partial wave ψ i into reflected wave
ψ r and transmitted wave ψ t is captured by the scattering
amplitudes r and t, respectively. Hence, the reflected beam
can be expressed asΨr

kr ¼
R
dk0wðk0 − krÞrðk0Þψ r

k0 , similar
for the transmitted one. The anomalous shift is found by
comparing the center positions of the beams at the
interface.
Following the standard approach [11,15,20,27], the

spatial shift for the reflected or transmitted beam can be
obtained as [28]

ls¼
�
usks

����i ∂
∂kk

����usks
�
−
�
uiki

����i ∂
∂kk

����uiki
�
−

∂
∂kk argðsÞ; ð1Þ

where s ¼ r; t, and in the last term, we have abused the
superscript s to also denote the scattering amplitude.
In this formula, the first two terms each is the in-plane

component of the Berry connectionA ¼ huji∇kjui for the
corresponding state, which is an intrinsic band geometric
property. The last term shows that the shift depends on the
phase but not the magnitude of the scattering amplitude. In
Fig. 1(a), we considered a single reflected or transmitted
beam. The result also applies when there are multiple
scattering channels, simply by inserting the state and the
scattering amplitude for the corresponding beam s. We note
that the formula closely resembles the result for the
side jump at an impurity derived by Sinitsyn, Niu, and
MacDonald [29].
CAS and its quantization.—Now let us proceed to the

concept of CAS. For concreteness, we focus on the shift for
the reflected beam and neglect the superscript r in the
following discussion.
As from Eq. (1), the shift l is a function of the interface

momentum kk, which is conserved during scattering.
Assuming the equi-energy surface in the incident medium

takes a simple convex shape, l forms a vector field defined
in a domain S (where reflection occurs) in the interface
momentum kk space [Fig. 1(b)]. Then the CAS κC along a
closed loop C ∈ S is defined as

κC ≡
I
C
l · dkk: ð2Þ

Clearly, for a generic loop, both longitudinal and transverse
components of l contribute to the CAS. Using Eq. (1), κC
can be expressed as two contributions

κC ¼ Δγ −
I
C

∂
∂kk argðrÞ · dkk: ð3Þ

Here, the first contribution Δγ stands for the integral of the
first two terms along C. Importantly, the second contribu-
tion represents the phase winding of the reflection ampli-
tude. As long as the loop does not hit any singularity of
argðrÞ, this term must give an integer multiple of 2π,
namely, we should have

κC ¼ Δγ þ 2πN; N ∈ Z: ð4Þ

Because of the Δγ term, κC need not be quantized for the
most general case. However, there are many cases of
interest, whereΔγ vanishes and we indeed have a quantized
CAS. This is true (at least) when either of the following
conditions is satisfied. (i) The incident medium is “trivial,”
in the sense that its Berry connection vanishes. This is
the case when the medium has a real representation (i.e.,
described by a real Hamiltonian). If satisfied, Δγ must
vanish, and κC ¼ 2πN. (ii) The incident medium has a
reflection symmetry Mz which connects the incident and
the reflected states (this mirror must be parallel to
the interface). In this case, even though the Berry con-
nections for the incident and the reflected states may be
nonzero, their in-plane components must cancel out and
hence Δγ ¼ 0.
Under the above conditions, the CAS takes a quantized

value, analogous to the circulation in superfluid [2].
Importantly, the quantized CAS is solely determined by
the scattering amplitude r, or more specifically, by the
phase winding of r, which encodes the information of the
other medium at z > 0 (referred to as the target medium).
A nontrivial CAS value (N ≠ 0) indicates generically the
presence of vortices in the vector field l, and the
locations of these vortices correspond to the singularities
in the phase of r. As we shall see, the CAS can manifest
the distinct features of the target medium. Moreover, the
quantization of CAS endows it with a topological
robustness, namely, its value is robust against perturba-
tions on the system. Thus, the quantized CAS provides a
powerful way to characterize medium properties.
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To illustrate these points, we consider two concrete
examples.
Probing a Weyl medium.—In the first example, we take a

trivial incident medium (z < 0) described by a simple two-
band semiconductorlike model

HI ¼
�
k2

2m
þ Δ

�
σz; ð5Þ

where 2Δ is the gap between the two bands, and the Pauli
matrix σ here stands for a pseudospin (e.g., orbital) degree
of freedom. The target medium (z > 0) that we try to probe
is a Weyl medium [30,31], described by

HT ¼ vkzσz þ wðkn−σþ þ knþσ−Þ þ U þ δk2σx; ð6Þ

where k� ¼ kx � iky, σ� ¼ ðσx � iσyÞ=2, n is a positive
integer, v, w, U, and δ are model parameters. The first two
terms describe a Weyl point at the origin with a topological
charge

ν ¼ sgnðvÞn: ð7Þ
For the case with n ¼ 1 and w ¼ v, they reduce to the usual
Weyl model vk · σ; and the case with n > 1 corresponds to
the so-called multi-Weyl point with higher topological
charges [32,33]. U represents a potential energy shift
across the interface. The last term is a small quadratic
term added to ensure a well-defined boundary condition
withHI, which does not affect the essential physics, and we
may take δ → 0 in the final results.
Because HI is trivial, according to our theory, the CAS

must be quantized. More importantly, as we shall see, the
CAS can take a nonzero value, which is determined by the
topological charge ν of the Weyl point inside the target
medium.
Let us first consider the conventional Weyl point with

n ¼ 1. Without loss of generality, we assume the incident
beam has energy E > Δ, i.e., in the upper band. Our
discussion of CAS is within the domain S with kk < kM,
where kM ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðE − ΔÞp
is the maximal interface

momentum at E. For each kk ∈ S, the reflection amplitude
r and the shift l can be directly calculated using the
standard approach [34].
Here, to probe the Weyl point, we are most interested in

the situation when the Weyl point energy is close to E, as
illustrated in Fig. 2(a). In such a case, the equi-energy
surface of E in the Weyl medium has a radius kW ¼
jðE −UÞ=wj < kM in the kx-ky plane, so its projection in
the kk-plane lies within S. Now, consider the annulus-
shaped region A ⊂ S with kW < kk < kM. Within A, we
must have total reflection with jrj2 ¼ 1, because there is no
transmitted state in the Weyl medium with such kk. This
indicates that argðrÞ has no singularity in A, and l is
analytic in this region. Therefore, for any two topologically
equivalent loops C1; C2 ∈ A, we must have κC1

¼ κC2
.

As any contractible loop in A must have κ ¼ 0, let us
consider a noncontractible loop C ∈ A that encircles the
inner hole of the annulus [see Fig. 2(b)]. According to our
analysis, the calculation of κC can be simplified by noting
that κC ¼ κC0

, where C0 is a regular circle with radius kk in
A. Through straightforward calculations [34], we obtain the
transverse component of the shift lϕð≡l · ϕ̂Þ,

lϕ ¼ 1 − jζj2
kk × jζ þ iηe−iϕj2 ; ð8Þ

where ϕ ¼ argðkx þ ikyÞ is the polar angle of kk,
ζ ¼ f½ðp− þmvÞðmvþ ipþÞ�=½ðp− −mvÞðmv − ipþÞ�g,
η ¼ sgnðE − UÞ½ðE −U − vp0Þ=ðE −U þ vp0Þ�1=2, with
p� ¼ ½2mðE� ΔÞ � k2k�1=2 and p0¼ sgnðE−UÞ½ðE−UÞ2
−w2k2k�1=2=v. With this result, we obtain

κC ¼ κC0
¼ kk

Z
2π

0

lϕdϕ ¼ −2πν: ð9Þ

This remarkable result shows that an arbitrary loop enclosing
the hole (i.e., the equi-energy surface of the Weyl medium)
has a nontrivial quantized CAS, which is solely determined by
the topological charge ν of the Weyl point. Moreover, this
result is independent of whether the Weyl point is above or
below the energy E.
The nontrivial CAS in Eq. (9) indicates the existence of

the vortex in the phase winding of r inside the central
region with kk < kW . The vortex center corresponds to
the singularity in argðrÞ, which occurs here at r ¼ 0.
In Fig. 2(c), we plot the numerical result for argðrÞ,
which confirms the presence of a vortex, and the vortex

(a)

(b) (c)

FIG. 2. (a) Schematic figure showing the interface formed
between a trivial medium and a Weyl medium. (b) Numerical
results for the l field, for which the magnitude and the direction
are indicated by the color and the streamline, respectively.
(c) Plot of argðrÞ. The white circles in (b) and (c) indicate the
region with radius kW . Here, we set m ¼ 0.04me, Δ ¼ 0.2 eV,
v ¼ 1.5 × 106 m=s, U ¼ 0.6 eV, E ¼ 1.0 eV, and δ ¼
10−4 eV nm2.
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center coincides with the zero point of r. In the limit of
E ≫ Δ; ðE −UÞ, we can derive an analytic expression for
the shift around the vortex center k�k, which exhibits the
behavior [34]

l ∝ νðqy;−qxÞ=q2; ð10Þ

where q is the momentum measured from k�k. This confirms
the nontrivial circulation pattern around the vortex. In
addition, one can easily see that the result in Eq. (9) applies
to any loop C ∈ S that encloses the point k�k.
The above analysis can be directly extended to multi-

Weyl points with n > 1. As spin- or pseudospin-orbit
coupling plays an important role in the shift [16,20,23],
the l-field patterns for the multi-Weyl points are expected
to be different, due to their different forms of coupling.
However, the key finding is that our result (9) remains valid
[34], namely, the CAS is nontrivial, and the quantization
integer −κC=ð2πÞ just corresponds to the topological
charge of the Weyl point. In Fig. 3, we plot the calculation
results for double-Weyl (n ¼ 2) and triple-Weyl (n ¼ 3)
points. One observes that there exist n vortices inside the
kk < kW region, which are responsible for the nontrivial
quantized CAS.
Probing a superconductor.—As a second example, we

consider the CAS for Andreev reflection at a normal-
metal–superconductor interface. Here, we take the model
of a simple metal for the incident medium (z < 0), so
its Bogoliubov–de Gennes (BdG) Hamiltonian is given
by [38]

HI ¼
�
k2

2m
− EF

�
τz; ð11Þ

where EF is the Fermi energy and τ is the Nambu
pseudospin acting on the electron-hole space. The target
medium (z > 0) is a superconductor described by
[35,38,39]

HT ¼
�
k2

2m
þ U − EF

�
τz þ ðΔτþ þ Δ�τ−Þ; ð12Þ

where Δ is the superconducting pair potential and
τ� ¼ ðτx � iτyÞ=2.
Here, we focus on the shift l during Andreev reflection

for an incident electron beam with excitation energy ε.
Again, because the incident medium (HI) is trivial, the shift
is solely determined by the Andreev-reflection amplitude
rA, and its CAS must be quantized. In the following, we
shall investigate how the different pairing types (encoded
in Δ) affect the value of CAS.
We first consider the s-wave pair potential with Δ

given by a constant Δ0. Straightforward calculation [34]
shows that the shift only has a longitudinal component
[Fig. 4(a)], with

l ¼ 2ðp2
s − p2

nÞ2 tan α
pspn½4p2

sp2
n þ ðp2

s þ p2
nÞ2tan2α�

kk; ð13Þ

where pn ¼ ð2mEF − k2kÞ1=2, ps ¼ ½2mðEF −UÞ − k2k�1=2,
and α ¼ −icosh−1ðε=Δ0Þ. Meanwhile, one can check
that argðrAÞ has no singularity within S. Thus, the CAS
vanishes in this case.
The situation is dramatically different for chiral pair

potentials, described by Δ ¼ Δ0e−iχϕ with χ a nonzero

(a) (b)

(c) (d)

FIG. 3. Results for the target medium with (a)–(b) double-Weyl
point, and (c)–(d) triple-Weyl point, corresponding to n ¼ 2 and
n ¼ 3 in model (6), respectively. (a),(c) exhibit the l field, and
(b),(d) show the phase of r. The white circles indicate the region
with radius kW . Here, we take w ¼ 1 nm2 eV, U ¼ 0.8 eV in
(a)–(b); and w ¼ 1 nm3 eV, U ¼ 0.92 eV in (c)–(d). Other
parameters are the same as that in Fig. 2.

(a) (b)

(c) (d)

FIG. 4. Calculated l field in Andreev reflection for (a) s-wave,
(b) chiral p-wave, and (d) dx2−y2 -wave pair potentials. (c) The
phase of rA for the chiral p-wave case. Here, we take ε ¼ 0.02 eV,
m ¼ 0.04me, Δ0 ¼ 0.04 eV, EF ¼ 0.1 eV, and U ¼ 0.3 eV.
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integer. For this case, l has not only a longitudinal
component [given by the same expression as Eq. (13)],
but also a transverse component

lϕ ¼ −
χ

kk
: ð14Þ

One immediately notes that the CAS is nontrivial for any
simple loop C encircling the origin [see Fig. 4(b)] and

κC ¼ −2πχ; ð15Þ
i.e., the quantized CAS is solely determined by the chirality
of the pairing. Figure 4(c) further confirms the vortex in the
phase winding of rA. Note that different from the case in
Fig. 2, the singularity here is due to the fact that ϕ in the
pair potential is undefined at kk ¼ 0.
Finally, we consider the dx2−y2-type pairing, with

Δ ¼ Δ0 cosð2ϕÞ. Figure 4(d) shows the numerical result
for l, which generally has both longitudinal and transverse
components. In the figure, the four gray-colored sectors
mark the so-called suppressed zones [22], corresponding to
the four nodes of the d-wave pairing gap, where ε > jΔj
and the shift vanishes [34]. Excluding the suppressed zones
from S, then within S there is no isolated singular point.
Thus, for a loop C ∈ S, we should have κC ¼ 0.
Discussion.—We reveal a new quantized quantity in a

ubiquitous process. Moreover, the quantized CAS encodes
the topological information of the medium, and therefore
may offer a new approach for characterization. As we have
shown, this could be particularly useful by constructing a
planar interface between a trivial incident medium (such as
the simple metal) and the target medium (to be probed), and
by mapping out the shift vector field. This actually con-
forms with the typical experimental setup. Note that this
setup is distinct from the previous works on shift in Weyl
semimetals [15,16,18,19], where the beam is incident from
a Weyl semimetal, so the incident medium itself is non-
trivial and does not satisfy the condition for the CAS
quantization. For example, Ref. [19] reported a kind of
“half” vortex in the l field, which is not quantized.
As quantized quantities, the CAS and the associated

vortices enjoy a topological robustness (the vortices are
well-known topological defects of the vector field). For
example, one can show that they are robust against possible
potential barrier at the interface [34].
The experimental detection of the anomalous shift has

been well developed in the field of optics [40–45]. Photonic
crystals simulating Weyl and other topological band struc-
tures have also been achieved [46–49]. Hence, the circu-
lation pattern, the vortex, and the quantized CAS should be
easily probed in the optical context. Meanwhile, several
methods for detecting the shift in electronic systems were
also proposed, such as by engineering specific junction
geometry [16,20,50] and by enhancing the shift via
multiple reflections [15,22]. The shift there can typically
reach 10–100 nm [22,50], much larger than the lattice scale.

It is particularly interesting to probe the shift for super-
conductors (in Fig. 4), which can help to characterize
unconventional superconductivity.
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