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The topological Hall effect (THE) and its thermoelectric counterpart, the topological Nernst effect
(TNE), are hallmarks of the skyrmion lattice phase (SkL). We observed the giant TNE of the SkL in
centrosymmetric Gd2PdSi3, comparable in magnitude to the largest anomalous Nernst signals in
ferromagnets. Significant enhancement (suppression) of the THE occurs when doping electrons (holes)
to Gd2PdSi3. On the electron-doped side, the topological Hall conductivity approaches the characteristic
threshold ∼1000 ðΩ cmÞ−1 for the intrinsic regime. We use the filling-controlled samples to confirm Mott’s
relation between TNE and THE and discuss the importance of Gd-5d orbitals for transport in this
compound.
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A skyrmion spin-vortex [1,2] represents a quantized unit
of scalar spin chirality χαβγ ¼ Sα⋅ ðSβ × SγÞ, defined for
three neighboring magnetic moments on lattice sites α, β,
and γ. It was realized early on that spin-winding results in
an emergent gauge field acting on moving particles, leading
to anomalies such as the topological (or geometrical) Hall
effect (THE) and its sibling, the topological Nernst effect
(TNE) [3–9]. The relative magnitude of the carrier mean-
free path lmfp as compared to the size of the skyrmion λsk,
i.e., to the size of the magnetic unit cell, governs the
appropriate starting point for theoretical modeling [10].
Well-known cases of noncentrosymmetric materials with a
skyrmion lattice (SkL) phase, such as MnSi [2,11–13], fall
into the regime lmfp ≪ λsk, and it is understood that the
(weak) THE relates to a Berry-phase induced deflection of
wave packets moving through the twisted spin texture in
real space [6,13–15]. Meanwhile, the as-yet unexplored
“intrinsic” (momentum-space) limit lmfp ≥ λsk necessitates
a modification of the electronic wave functions themselves
by the presence of magnetic order, which is predicted to
yield a large THE and TNE due to Berry curvature in
reciprocal space [5,16–20].
To describe the connection between TNE and THE, we

write the electric currents J emanating from an applied
electric field E or an applied temperature gradient ð−∇TÞ
as Ji ¼ σijEj and Ji ¼ αijð−∇jTÞ, respectively. The TNE
provides insight into the effect of a variation of the

chemical potential ζ, as expressed by the Mott relation
[21,22]

αij=T ¼ −ðπ2=3Þðk2B=eÞð∂σij=∂εÞε¼ζ; ð1Þ

where kB, e (>0), and ε represent the Boltzmann constant,
the fundamental charge, and the band filling energy,
respectively. Due to experimental constraints—such as
relatively weak spin polarization and low skyrmion
density in the ambient pressure, equilibrium SkL phases
of chiral B20 compounds (skyrmion-skyrmion distance
∼20–200 nanometers)—the TNE of a SkL has never
hitherto been observed experimentally.
In this Letter, we report the large TNE of the SkL in

centrosymmetric Gd2PdSi3, compare its magnitude to
recently observed giant anomalous Nernst responses in
ferromagnets, and show how the TNE is related to the
enhancement (decrease) of the THE under electron (hole)
doping through the Mott relation. We demonstrate that
on the electron-doped side, the intrinsic limit of the
THE may be within reach, and that the large transport
responses in Gd2PdSi3 are likely related to the prevalence
of Gd-5d conducting orbitals in close proximity to the
Fermi energy.
Rare-earth intermetallics with SkL phase, such as

Gd2PdSi3 [23], Gd3Ru4Al12 [24], and GdRu2Si2 [25] are
highly suitable for investigating the transport response
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from the emergent gauge field: a tiny vortex-vortex dis-
tance λ ∼ 2–3 nm leads to giant responses, strongly modi-
fying the trajectory of moving charge carriers. We focus
here on centrosymmetric, hexagonal Gd2PdSi3 [Fig. 1(a)],
where magnetic long-range order onsets at TN ∼ 20 K.
The dominant magnetic ion is Gd3þ in the triangular
lattice plane. Dzyaloshinskii-Moriya interactions, which
are intrinsic to noncentrosymmetric material platforms and
which favor helical order and skyrmion spin textures, are
expected to be globally absent in this centrosymmetric bulk
crystal [23]. Instead, skyrmion formation is driven by
frustrated interactions mediated through the conduction
electrons [26,27] and remarkably, skyrmions were found to
exist (for the magnetic field Bkc axis) even at the lowest
T ¼ 2 K, i.e., at T=TN ∼ 0.1 [23]. Located between two
phases with zero net scalar spin chirality [spiral-like IC-1
(possibly multi-q) and the fanlike IC-2, Fig. 1(b)], the
topologically stable SkL is bounded by sharp, first-order
phase transitions as observed in the strongly hysteretic
field-derivative of the magnetization [DC susceptibility
χDC, Fig. 1(d) see also Refs. [23,28] ]. This phase alone
was found to host enormous THE and TNE responses
in our high-resolution transport experiments [Figs. 1(c),
1(e)–1(g), see Supplemental Material for technical details
[29] ], the Hall signal being in good agreement with
previous work [23,28].

We consider cases where Nernst signals arising from
noncoplanar spin arrangements have previously been
reported: (i) Pyrochlore Nd2Mo2O7, a canted ferromagnet
where the signal is roughly proportional to the net magneti-
zation at all T studied [62]. (ii) B-20 type, helimagnetic
MnGe, where the THE and TNE probe the imbalance
between positive and negative contributions to the gauge
field. These originate from magnetic monopoles and
antimonopoles, respectively [7,63]. (iii) Thin films of the
Heusler alloy Mn1.8PtSn, the magnetic structure of which
was not verified independently [64]. In contrast to these
cases, the Nernst effect from the SkL laid out here
represents a minimal, textbooklike example of the thermo-
electric response emerging from a spin texture with integer
winding per magnetic unit cell.
The Nernst conductivity (sometimes referred to as trans-

verse thermoelectric conductivity or transverse Peltier
conductivity [29]) is calculated via αxy¼SxyσxxþSxxσxy,
requiring input from the longitudinal thermopower Sxx
[Fig. 1(e)]. Sxx is of comparable magnitude for the two
low-field phases IC-1 and SkL; the strong difference of
THE and TNE in the respective phases, as well as sharp
maxima in χDC [Fig. 1(d)], clearly distinguish these two
states. Figures 1(f) and 1(g) show the experimentally
obtained Nernst effect Sxy=T and Nernst conductivity
αxy=T (entropy factors removed). Note that αxy=T

FIG. 1. (a) Hexagonal structure (basic AlB2-type) of Gd2PdSi3. Inset: high-density SkL state with nanometer-sized interskyrmion
distanced. (b)Magnetic phase diagram forBkc anddecreasing field∂B=∂t < 0, as adapted fromRef. [61]. Labels indicate the IC-1 ground
state, the skyrmion lattice phase, the IC-2 fanlike state, and the paramagnetic regime (PM). (c) Hall resistivity, (e) thermopower, (f) Nernst
effect, and (g) Nernst conductivity. For the latter three, entropy factor ∼T was removed. (d) Magnetic susceptibility χDCðBÞ at the
lowest T ¼ 2 K. Curves in panels (c),(e)–(g) were shifted by vertical offsets of 2 μΩ cm, 15 nVK−2, 10 nVK−2, and 0.01 AK−2 m−1,
respectively.Thezero level for eachcurve is indicatedbyacolored triangle at the right sideof thepanel.Solidarrowsmark thedirectionof the
field ramp. In (e), red, green, and purple twinned lines also indicate zero levels for T ¼ 7.6, 9.7, and 14.8 K.
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represents the intrinsic transverse thermoelectric response
[21], while the derived observable Sxy depends strongly on
T (via the entropy factor) and the resistivity, i.e., the
scattering properties, of the material [65].
For perspective we compare, side-by-side in Fig. 2,

representative magnetic materials with anomalous (ANE,
i.e., proportional to the net magnetizationM) or topological
(TNE, proportional to the scalar spin chirality) αxy=T.
Although the TNE of Gd2PdSi3 cannot match the ultralarge
ANE exhibited by the ferromagnetic Weyl semimetal
Co2MnGa [66], it easily outperforms the ANE of more
metallic ferromagnets, e.g., SrRuO3 [67] or elemental Fe
and Co, for which only sparse data [68] and calculated
values [69] are available at present [29].
The large TNE signal with negative sign indicates, from

Eq. (1), that significant enhancement of the THE should be
observed when moving the chemical potential ζ of
Gd2PdSi3 upwards. Knowing that Pd-4d orbitals are
located about 4 eV below ζ [70], a gentle shift of
ζ may be achieved using a series of slightly carrier-doped
crystals Gd2ðPd1−xMxÞSi3 with M ¼ Rh (hole doping) or
Ag (electron doping), as shown in Fig. 3. We define a
generalized nominal dopant concentration z ¼ −x on the
hole-doped and z ¼ x on the electron-doped side. The
single crystals were characterized thoroughly using solid
state techniques [29]. Figures 3(a) and 3(b) report the
ordering temperature TN from magnetic susceptibility as
well as the modulation vector q ¼ ðq; 0; 0Þ of the ground
state from resonant elastic x-ray scattering (REXS) at the
Gd-L2 absorption edge in reflection geometry [sketch in
Fig. 3(a)]. We determined q from scans of scattering
intensity along high-symmetry lines in momentum space
[Fig. 3(b), inset]. These data show that the magnetic
properties are but weakly affected by chemical substitution
on the Pd site.
In electrical transport measurements, the topological

Hall resistivity ρTyx changes significantly with z [Figs. 3(c)
and 3(d), respectively]. We calculate the topological
Hall conductivity σTxy ¼ ρTyx=ðρ2xx þ ρ2yxÞ, shown in
Fig. 3(e) for selected samples. The peak value

max½σTxyðB; T ¼ 2 KÞ� is plotted in Fig. 3(f). The green
line in this panel has a slope determined directly from
the magnitude of the topological Nernst conductivity
αTxy=T using Eq. (1) [29]. A necessary ingredient of the

FIG. 2. Comparison of large Nernst conductivity αxy=T driven
by magnetic order for various materials reported in the literature.
Grey shading indicates anomalous Nernst response (ANE,
proportional to the net magnetization M), while red shading is
reserved for the topological Nernst effect (TNE, proportional to
the scalar spin chirality).

(a) (c)

(b) (d)

(f)

(e)

FIG. 3. (a) Néel temperature TN of Gd2ðPd1−xMxÞSi3 from
magnetic susceptibility. M ¼ Rh, Ag corresponds to z < 0
(z > 0), respectively (see text). Inset: sample geometry for
resonant elastic x-ray diffraction (REXS) at the Gd-L2 edge in
reflection geometry. (b) Magnetic wave number q, determined
from REXS. The data point for pure Gd2PdSi3 (grey disk) is
reproduced from Ref. [23]. Inset: line scans of REXS intensity
along ð2 − h; 1; 0Þ in reciprocal space for two samples, after the
subtraction of a constant background. The beam energy was set to
E ¼ 7.935 keV and the sample temperature was T ¼ 4 K (5 K)
for the Ag-doped (Rh-doped) crystal. Scale of y axis (not shown)
is intensity normalized by monitor counts (arbitrary units).
Statistical errors of detector counts are indicated. (c) Longitudinal
resistivity as well as extremal (d) topological Hall resistivity and
(f) topological Hall conductivity. Systematic (sample shape)
errors are indicated. In (e), raw data of Hall conductivity as a
function of magnetic field. Inset of (d), illustration of the real-
space Berry-phase mechanism for the THE and TNE [6,12]. Red
lines in (b),(d) are guides to the eye, while the green line in
(e) was calculated from the Nernst conductivity (see text).
Vertical dashed lines mark z ¼ 0.
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calculation, the inverse density of states ∂ε=∂z, was
estimated from the specific heat of isoelectronic Y2PdSi3
[29,71]. Good agreement of the doping study with the
Nernst signal—without any adjustable parameters—
amounts to a direct experimental confirmation of Eq. (1)
for the THE and TNE.
The combined band filling and thermoelectric experi-

ment establishes Gd2PdSi3 as a model material for the
quantitative exploration of transport responses in the
presence of rather mild changes to the magnetic properties.
Note that the Mott relation for the TNE has, to the best of
our knowledge, never before been demonstrated in the
literature. Even for the ANE, the only test without
adjustable parameters was carried out using thin films of
CrxðSb1−yBiyÞ2−xTe3, with ferromagnetism induced by
dilute Cr spins (x ¼ 0.15, Refs. [29,72]). We emphasize
that not only can the sign of the filling-induced change to
σTxy be predicted from αTxy but even its magnitude to within
several tens of percents.
We further scrutinize underlying assumptions made in

comparing the TNE with the THE for the doped crystals.
First, Eq. (1) describes the regime of linear response.
Hence, we note that despite being moderately large
(−∂xT ∼ 0.3 K=mm), the longitudinal T gradient in our
Nernst experiment on Gd2PdSi3 is too small to unpin the
SkL, and to result in a flux-flow type Nernst effect [29].
Second, Smrčka and Středa derived Eq. (1) by changing ζ
while leaving all other parameters unaffected—such as
character of the magnetic ordering, nature of the electronic
bands, and scattering processes [22]. We have demon-
strated the stability of the magnetic order in Fig. 3 and,
because even stoichiometric Gd2PdSi3 already has signifi-
cant residual resistivity, the introduction of dopants does
not excessively affect the scattering properties [29]. Third,
the electronic spectrum of Gd2PdSi3 is sufficiently broad-
ened by disorder to justify the linear approximation [green
line in Fig. 3(f)] [29].
It is worth emphasizing that the validity of Mott’s

relation is in itself experimental evidence for the suitability
of the rigid band scenario in describing mild changes
of composition in Gd2ðPd1−xMxÞSi3 (M ¼ Rh, Ag).
However, the notion of rigid bands warrants some more
careful examination. As a first step, we have calculated the
partial density of states (P-DOS) gPðεÞ of pure Gd2PdSi3
in the framework of density functional theory (DFT)
[Fig. 4(a)], using the Ce2CoSi3 structure type. The
calculations were carried out in the fully spin-polarized
state (see the Supplemental Material for technical
details [29]). Figures 4(b) and 4(c) further illustrate the
effect of doping. The size of the unit cell for the doped
cases was doubled along c, and one Pd atom was replaced
with Rh or Ag [29]. Although this is an imperfect
approximation for randomly distributed dopants in the
experimental study, shifting of the total density of states
(DOS) to the left (right) side for electron (hole) doping

was observed in these calculations, consistent with the
rigid band scheme.
The P-DOS in Fig. 4(a) is consistent with previous

photoemission work on R2PdSi3 (R ¼ Tb, La, Gd) [70] and
indicates that Gd-5d orbitals dominate the total DOS at ζ.
Sizable Hund’s rule coupling within the atomic shell of
Gadolinium underpins the large THE and TNE in this
material. Considering the giant σTxy on the electron-doped
side in Fig. 3, it is instructive to examine key material
parameters. We draw on experimental data of the carrier
mobility (from the normal Hall effect and ρxx) to
estimate the carrier mean free path in stoichiometric
Gd2PdSi3 [29]. Under the assumption of a twofold spin
degenerate spherical (tubular) Fermi surface, lmfp ¼
3.9 nm (¼2.8 nm). Despite disorder, this is comparable
to or larger than the characteristic dimensions of the spin
texture. Moreover, an order-of-magnitude estimate for the
typical Hall conductivity in the intrinsic region yields
σintxy ≈ 950 Ω−1 cm−1, not far from the present experimental
result [29].
In conclusion, the insights presented here not only

demonstrate a giant TNE from skyrmions and establish
the validity of Mott’s relation for THE and TNE, but also
provide a guiding post for driving deeper into the intrinsic
regime of THE and TNE for centrosymmetric skyrmion
hosts. The present Nernst response of high-density

(a)

(b) (c)

FIG. 4. Density functional theory calculations, neglecting
Gd-4f, in the spin-polarized state of pure Gd2PdSi3. (a) Partial
density of states (P-DOS) gPðεÞ; solid and dashed lines represent
spin-up and spin-down bands, respectively. (b),(c) Total DOS
gðεÞ for Gd2PdSi3 and two doped derivatives. The vertical fat
lines are guides to the eye, marking the shift of prominent features
in gðεÞ with band filling.
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skyrmion textures in the centrosymmetric magnet
Gd2PdSi3 is on par with the largest anomalous Nernst
signals ever observed in ferromagnets.
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