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We study the viscous properties of a system of weakly interacting spin-1
2
fermions in one dimension.

Accounting for the effect of interactions on the quasiparticle energy spectrum, we obtain the bulk viscosity
of this system at low temperatures. Our result is valid for frequencies that are small compared with the rate
of fermion backscattering. For frequencies larger than this exponentially small rate, the excitations of the
system become decoupled from the center of mass motion, and the fluid is described by two-fluid
hydrodynamics. We calculate the three transport coefficients required to describe viscous dissipation in this
regime.
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Hydrodynamics is a classical description of the mechani-
cal and thermal properties of a fluid near equilibrium [1].
The application of hydrodynamics to low-dimensional
quantum liquids has provoked a great deal of excitement
and has important implications for both experiment [2–5]
and theory [6–8]. Applied to the collective behavior of
electrons in quantum wires or carbon nanotubes, hydro-
dynamics would potentially offer new insight into the
transport properties of these systems [9,10]. From a
theoretical perspective, reconciling the behavior of a
one-dimensional (1D) quantum liquid with that of a
classical dissipative fluid raises important questions.
In particular, many quantities of interest are directly

related to dissipation. The dissipative dynamics of a 1D
fluid is characterized by two transport coefficients, the
thermal conductivity and the bulk viscosity. Ultimately, the
calculation of these parameters requires input from a
microscopic model. Much progress has been made in
understanding 1D systems through the study of integrable
models [11]. However, integrability precludes the relaxa-
tion of excitations, and thus, these models are incapable of
accounting for dissipative effects in real fluids [12,13]. For
the particular case of spinless quantum liquids in one
dimension, however, the bulk viscosity and thermal con-
ductivity can be evaluated [14,15] within the Tomonaga-
Luttinger liquid framework [16,17].
One-dimensional systems of spin-1

2
fermions generally

relax much more rapidly than their spinless counterparts.
Thus, the results [14,15] for the transport coefficients of
spinless systems do not apply to those with spin. Given the
importance of systems of spin-1

2
fermions, a means of

calculating their transport coefficients would be beneficial.
Unfortunately, spin-charge separation [17–19] frustrates
the application of the Tomonaga-Luttinger liquid theory for
this purpose. On the other hand, the regime in which the

transport coefficients are largest is, in fact, theoretically
accessible. Indeed, transport coefficients are proportional to
the relaxation time of the system [20] and, thus, are large
for weakly interacting systems. Furthermore, as long as the
relevant energy scale—in this case, temperature—is large
compared with the interactions, the effect of spin-charge
separation can be neglected [21]. For these reasons, in this
Letter, we study the case of weakly interacting spin-1

2
fermions.
The transport coefficients of 1D systems reflect their

unique relaxation properties. A 1D Fermi gas at low
temperatures exhibits two disparate relaxation rates [22].
The slowest relaxation process involves backscattering of
particles, in which, say, a right mover is converted to a left
mover. For such a process to occur, a hole must pass
through the bottom of the band. Hence, the rate for these
processes takes the activated form 1=τ ∼ e−EF=T , where EF
is the Fermi energy and T is the temperature. On the other
hand, typical particle-hole excitations relax much more
rapidly, with a characteristic rate 1=τex that scales as a
power of T.
Transport coefficients are associated with specific per-

turbations of the system. The thermal conductivity κ
quantifies the heat current that arises from the application
of a temperature gradient. Since currents in one dimension
are associated with an imbalance between the right and left
movers, the thermal conductivity is dominated by fermion
backscattering, i.e., κ ∝ τ [15,22–24]. The bulk viscosity ζ,
on the other hand, is a measure of the amount of entropy
generated by a change in the fluid density—a perturbation
that affects right and left movers equally. This perturbation
creates particle-hole excitations, and thus, ζ ∝ τex [14,25].
The calculation of ζ is, in general, more challenging than
that of κ since particle-hole excitations exhibit a spectrum
of relaxation rates, whereas κ is dominated by a single rate
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[23]. The study of the bulk viscosity of a 1D gas of spin-1
2

particles is our main goal. Taken together with an under-
standing of thermal transport, our results give a complete
hydrodynamic description of a 1D gas of spin-1

2
fermions.

The vast majority of experimentally relevant 1D systems
of fermions, including quantum wires in GaAs as well as
cold atomic gases, exhibits single particle energy spectra
that are quadratic in momentum. It is well known that a
straightforward calculation of the bulk viscosity in this case
gives ζ ¼ 0 [20,26]. This presents a theoretical challenge
which we overcome by properly accounting for the
renormalization of the energy spectrum by the interactions.
Classical hydrodynamics describes the properties of the

system at frequencies ω that are small compared with the
slowest relaxation rate. In our system, the slowest relax-
ation process is fermion backscattering, and therefore, this
condition is ω ≪ 1=τ. The presence of two disparate scales
of relaxation rates, 1=τ and 1=τex, ensures that there exists a
broad frequency range 1=τ ≪ ω ≪ 1=τex. In this regime,
particle hole excitations, due to their rapid equilibration,
behave as a gas moving with a well-defined velocity. In the
absence of backscattering, this velocity can differ from the
velocity of the center of mass. Therefore, the system is
properly described by two-fluid hydrodynamics, similar
to the theory developed for superfluid 4He [27]. This
conclusion is central to recent theoretical work on the
superfluidlike behavior displayed by 1D liquids at finite
frequencies [28,29]. In two-fluid hydrodynamics, bulk
viscosity is described by three transport coefficients. We
obtain analytic expressions for these quantities.
We start by considering the thermodynamic equilibrium

state of a noninteracting 1D Fermi gas. In the absence of a
magnetic field, the spins are degenerate, and the occupation
numbers of the fermion states depend only on the momen-
tum

nð0Þp ¼ 1

exp

�
ϵp−up−μ

T

�
þ 1

: ð1Þ

Here, ϵp ¼ p2=2m is the energy of the fermion with
momentum p, while μ is the chemical potential. The
appearance of the term −up in Eq. (1) is dictated by the
conservation of momentum in a uniform system. The
physical meaning of the parameter u is the velocity of
the gas.
In the presence of an infinitesimal gradient of velocity

∂xu, weak interactions in the Fermi gas lead to scattering of
particles, resulting in dissipation. The power W dissipated
in the system is

W ¼ ζLð∂xuÞ2; ð2Þ

where ζ is the bulk viscosity and L is the system size [1].
Below, we use Eq. (2) to evaluate ζ.

To obtain the power dissipated in the Fermi gas, we
employ the standard expression for the entropy S ¼
−2

P
p½np ln np þ ð1 − npÞ lnð1 − npÞ� in terms of the

occupation numbers np. Differentiation of S with respect
to time gives the entropy production rate

_S ¼ −2
X
p

_np ln
np

1 − np
: ð3Þ

Substitution of the unperturbed occupation numbers (1) for
np within the logarithm in Eq. (3) results in _S ¼ 0 by virtue
of the laws of conservation of the number of particles,
momentum, and energy. On the other hand, a small velocity
gradient generates a correction to the occupation numbers
δnp ∝ ∂xu. Substituting np ¼ nð0Þp þ δnp into Eq. (3) and
expanding to first order in δnp, one finds the dissipation
rate W ¼ T _S in the form

W ¼ −2T
X
p

_npδnp

nð0Þp ð1 − nð0Þp Þ
: ð4Þ

Both _np and δnp are proportional to the perturbation ∂xu.
Therefore, W ∝ ð∂xuÞ2, as expected from Eq. (2).
We will obtain _np and δnp by using the Boltzmann

equation, which can be written as a combination of the
relation

_np ¼ ∂tnp þ ð∂pϵpÞ∂xnp; ð5Þ

with the expression for _np in terms of the collision integral,
_np ¼ I½np�. Because the correction δnp is small, to leading

order one can use unperturbed occupation numbers nð0Þp in
the right-hand side of Eq. (5). The correction δnp should

then be found by solving _np ¼ I½nð0Þp þ δnp�.
A nonzero gradient of velocity ∂xu of the gas results in a

time-dependent density of particles, which, in turn, gives
rise to a time-dependent chemical potential μðtÞ and
temperature TðtÞ. Keeping this in mind, substitution of
the unperturbed occupation numbers (1) into Eq. (5) yields

_np ¼ 1

T
nð0Þp ð1 − nð0Þp Þ

�∂tT
T

�
p2

2m
− μ

�
þ ∂tμþ

p2

m
∂xu

�
:

ð6Þ

Here, for simplicity, we have chosen a point in space where
u ¼ 0. Because the collisions of particles leading to the
equilibration of the system conserve particle number and
energy, _np must satisfy the conditions

Z
_npdp ¼ 0;

Z
ϵp _npdp ¼ 0: ð7Þ

These constraints enable one to obtain the rates of change
of the temperature and chemical potential,
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∂tT
T

¼ ∂tμ

μ
¼ −2∂xu: ð8Þ

The substitution of Eq. (8) into Eq. (6) yields _np ¼ 0.
This conclusion implies that the dissipation rate (4)

vanishes, and thus, the bulk viscosity ζ ¼ 0. This can be
understood as follows [14]. Consider a system with a fixed
number of particles N in a box of size LðtÞ such that
N=L ¼ n. From the standard continuity equation for the
particle density n, we conclude that its time dependence is
given by ð∂tnÞ=n ¼ −∂xu. Then the gradient of velocity
can be related to the time derivative of the system size,
ð∂tLÞ=L ¼ ∂xu. Given that the energy levels ϵp ¼ p2=2m
are multiples of ð2πℏ=LÞ2=2m, we conclude that
ð∂tϵpÞ=ϵp ¼ −2∂xu. Equation (8) then indicates that the
temperature and chemical potentials change at the same
rate as ϵp, and the ratio ðϵp − μÞ=T in the Fermi-Dirac
distribution Eq. (1) for u ¼ 0 remains unchanged. Thus, the
perturbation ∂xu does not drive the system out of equilib-
rium, resulting in no dissipation, and ζ ¼ 0. An analogous
result for a classical ideal gas is well known [20].
The above argument requires that the particle energies

scale as ϵp ∝ p2 (or, more precisely, as any power of jpj).
In an interacting system the fermion energies are affected
by other particles, and the scaling ϵp ∝ p2 no longer holds.
To account for this effect, we consider the usual two-
particle interactions described by the Hamiltonian

V̂ ¼ 1

2L

X
p;p0 ;q
σ;σ0

VðqÞa†pþq;σa
†
p0−q;σ0ap0;σ0ap;σ: ð9Þ

Here, VðqÞ is the Fourier transform of the interaction
potential, and ap;σ is the annihilation operator of a fermion
with momentum p and a z component of spin σ. Assuming
that the interactions are weak, we will limit our treatment to
first order perturbation theory in V̂. In this approximation,
the energy of the state with occupation numbers np;σ has the
form

E ¼
X
p;σ

p2

2m
np;σ

þ 1

2L

X
p;p0
σ;σ0

½Vð0Þ − Vðp − p0Þδσ;σ0 �np;σnp0;σ0 : ð10Þ

Since the energy of the many-body state is a functional of
the occupation numbers np;σ, the quasiparticle energies can
be obtained as ϵp;σ ¼ δE=δnp;σ, resulting in

ϵp ¼ p2

2m
þ
Z

dp0

2πℏ
½2Vð0Þ − Vðp − p0Þ�np0 ; ð11Þ

where we have assumed spin degeneracy and omitted the
spin indices. The energy spectrum (11) is no longer

quadratic in p. For a generic interaction, this will result
in nonvanishing _np, which we will evaluate to first order
in V̂.
It is worth noting that the low-energy properties of one-

dimensional systems of interacting fermions are usually
described within the framework of Luttinger liquid theory
[17], in which the elementary excitations have bosonic
statistics. On the other hand, it was shown in Ref. [21] that,
for weak interactions, the curvature of the spectrum
suppresses the Luttinger liquid effects, and the simple
perturbative treatment of interactions is appropriate. For
particles with energies of the order of T, the criterion of
Ref. [21] is pFVð0Þ=ℏ ≪ T, where pF ¼ ffiffiffiffiffiffiffiffiffi

2mμ
p

is the
Fermi momentum [30]. To account for the effects of
interactions in the Boltzmann equation formalism, we
notice that the first-order expressions for the energy of
the system (10) and quasiparticle energy (11) are consistent
with Fermi liquid theory [31]. The evaluation of the
transport coefficients in this approach was performed in
Refs. [26,32]. Below, we simplify and adapt the evaluation
[26] of _np induced by a small gradient of velocity to the
case of one dimension and weak interactions.
To proceed, we observe that Eqs. (1)–(5) are still

applicable, provided that the quasiparticle energies ϵp
include the Fermi liquid corrections [26,32]. Evaluation
of _np should now allow for the possibility of ϵp depending
on T and μ, which enter via the occupation numbers in
Eq. (11). Then, substitution of Eq. (1) for np in the right-
hand side of Eq. (5) yields

_np ¼ 1

T
nð0Þp ð1 − nð0Þp Þ

��
ϵp − μ

T
−
∂ϵp
∂T

�
∂tT

þ
�
1 −

∂ϵp
∂μ

�
∂tμþ pð∂pϵpÞ∂xu

�
: ð12Þ

Now, we substitute Eq. (11) for ϵp and obtain _np in linear
order in the interaction potential. The values of time
derivatives ∂tT and ∂tμ are fixed by the conservation laws
(7). For quasiparticles with energies near the Fermi level,
jϵp − μj ∼ T, to leading order in temperature, we find

_np ¼ γ

4μT
nð0Þp ð1 − nð0Þp Þ

�
v2Fðjpj − pFÞ2 −

π2T2

3

�
∂xu: ð13Þ

Here, the dimensionless parameter

γ ¼ Vð0Þ − Vð2pFÞ þ 2pFV 0ð2pFÞ − 2p2
FV

00ð2pFÞ
2πℏvF

ð14Þ

characterizes the strength of interactions, and vF ¼ffiffiffiffiffiffiffiffiffiffiffiffi
2μ=m

p
is the Fermi velocity.

In order to obtain the dissipation rate (4), one should find
a small correction δnp to the equilibrium distribution
function (1) by inverting the collision integral:
_np ¼ I½nð0Þp þ δnp�. For small δnp ∝ ∂xu, the latter can
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be linearized. The linearized collision integral for 1D spin-1
2

fermions was studied in Ref. [30]. Remarkably, in the low-
temperature regime, the correction to nð0Þp with momentum
dependence of Eq. (13) is an eigenmode of the collision
integral, with the relaxation rate

1

τ2
¼ 9½Vð0ÞVð2pFÞ − Vð2pFÞ2 − 2pFVð0ÞV 0ð2pFÞ�2

64π3ℏ5v4F
T:

ð15Þ

The latter statement means that, to leading order in
T=μ ≪ 1, the naive relaxation time approximation _np ¼
−δnp=τ2 is exact.
Next, we substitute δnp ¼ −τ2 _np and Eq. (13) into the

expression (4) for the dissipation rate and use Eq. (2) to
obtain the bulk viscosity

ζ ¼ 2π3

45

γ2T4τ2
ℏvFμ2

: ð16Þ

This result in combination with Eqs. (14) and (15) gives a
microscopic expression for the bulk viscosity of the
degenerate 1D gas of spin-1

2
fermions. Given the temper-

ature dependence of the relaxation time τ2 ∝ 1=T, we
conclude that ζ ∝ T3.
Our result (16), derived assuming a time-independent

perturbation ∂xu, is applicable at frequencies ω ≪ 1=τ.
Now, we consider the bulk viscosity of the system at
frequencies in the range 1=τ ≪ ω ≪ 1=τex, where the
backscattering rate is exponentially small, 1=τ ∝ e−EF=T ,
and the quasiparticle relaxation rate 1=τex ¼ 1=τ2 ∝ T. As
discussed above, in this regime, the system is described by
two-fluid hydrodynamics originally developed for super-
fluid 4He [27] and adapted to one dimension [29]. The rate
of viscous dissipation in this theory is controlled by three
transport coefficients, ζ1, ζ2, and ζ3

W
L

¼ ζ2ð∂xvnÞ2 þ ζ3½∂xðj − ρvnÞ�2

þ 2ζ1½∂xðj − ρvnÞ�ð∂xvnÞ: ð17Þ

Here, vn is the velocity of the normal component of the
fluid, j is the mass current, and ρ is the mass density.
To obtain microscopic expressions for the bulk viscos-

ities in Eq. (17) for the 1D Fermi gas, first, we notice that,
in the two-fluid regime, one can assume 1=τ ¼ 0, thereby
neglecting the backscattering of fermions. Then, the num-
bers of the right- and left-moving fermions are conserved,
and instead of μ, the occupation numbers are described by
two chemical potentials μR;L ¼ μ� δμ=2

nð0Þp ¼ 1

exp

�
ϵp−up−μ−ðδμ=2Þsgnp

T

�
þ 1

: ð18Þ

For δμ ≠ 0, the center of mass velocity of the Fermi gas is
different from the velocity u of the gas of elementary
excitations.
Next, we relate the parameters of the distribution function

(18) to vn and j in Eq. (17). The gas of particle-hole
excitations plays the role of the normal component of the
fluid [28,29], and thus, vn ¼ u. Then, using Eq. (18), we
express the mass current in terms of u and δμ

j ¼ ρuþ m
πℏ

δμ: ð19Þ

The form of the first term is dictated by the Galilean
invariance of the system. The second term is the
mass current analog of the well-known Landauer formula
I ¼ ðe2=πℏÞV for the electric current I ¼ ej=m in terms
of voltage V ¼ δμ=e. Thus, Eq. (19) yields j − ρvn ¼
ðm=πℏÞδμ.
To obtain the dissipation rate in the Fermi gas, we repeat

the steps leading to Eq. (13) for _np, while using the
unperturbed distribution nð0Þp in the form (18) and allowing
for small gradients ∂xu and ∂xδμ. To linear order in the
gradients, we obtain

_np ¼ 1

4μT
nð0Þp ð1 − nð0Þp Þ

�
v2Fðjpj − pFÞ2 −

π2T2

3

�

×

�
γ∂xu −

1

2pF
∂xδμ

�
: ð20Þ

Substituting Eq. (20) along with δnp ¼ −τ2 _np into Eq. (4),
we obtain the rate of dissipation in a 1D Fermi gas in the
two-fluid regime. Replacing u ¼ vn and δμ ¼ ðπℏ=mÞ
ðj − ρvnÞ in the resulting expression gives Eq. (17) with

ζ1 ¼ −
ζ

ργ
; ζ2 ¼ ζ; ζ3 ¼

ζ

ðργÞ2 ; ð21Þ

where ζ is given by Eq. (16) and we have applied the low-
temperature expression ρ ¼ 2mpF=πℏ. The result ζ2 ¼ ζ
follows immediately from the fact that, in the single-fluid
regime, δμ ¼ 0. Indeed, in this case, Eq. (19) yields
j ¼ ρvn, and Eq. (17) is identical to Eq. (2).
To assess the relative importance of ζ1, ζ2, and ζ3, we

compare the quantities ρζ1, ζ2, and ρ2ζ3, which all have the
same dimension. In the limit of weak interactions consid-
ered here, γ ≪ 1, they are very different in magnitude:
ρ2ζ3 ≫ ρjζ1j ≫ ζ2. This result is related to our earlier
observation that the nonequilibrium response _np to a small
gradient ∂xu vanishes in the absence of interactions. This
subtle feature of systems of particles with quadratic spectra
does not apply to the response to the gradient ∂xδμ in the
two-fluid regime, resulting in ρ2ζ3 ≫ ζ2. An important
application of our result (21) is to understand the attenu-
ation of sound modes, which, in the two-fluid regime, is
controlled by the parameter ζ̃ ¼ ζ2 − 2ρζ1 þ ρ2ζ3 [29].
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Our result (21) indicates that, for weakly interacting
fermions, the first two contributions are negligible and
to leading order ζ̃ ¼ ρ2ζ3.
We have focused on the experimentally relevant and

theoretically challenging case of a quadratic single-particle
spectrum. If the spectrum is not quadratic, the effect of
weak interactions on the spectrum need not be considered.
In this case, we expect that ζ will have a form similar to
Eq. (16) without the small parameter γ. In particular, it will
have the same temperature dependence as our result.
Finally, the approach presented here is also applicable to
the case of spinless electrons. We have verified that the
results for the bulk viscosity would be consistent with those
of Ref. [14] in the regime of weak interactions.
To summarize, we studied viscous dissipation in a 1D

gas of spin-1
2
fermions. At the lowest frequencies ω ≪ 1=τ,

the gas can be described by classical hydrodynamics, and
its bulk viscosity is given by our result (16). At frequencies
above the backscattering rate, 1=τ ≪ ω ≪ 1=τex, two-fluid
hydrodynamics is applicable, in which the viscous effects
are described by three transport coefficients. Our analytic
expressions for these coefficients are given by Eq. (21).
Our results are valid in the broad temperature range
pFVð0Þ=ℏ ≪ T ≪ EF.
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