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5DQMP, Université de Genève, 24 quai Ernest Ansermet, CH-1211 Genève, Suisse
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A striking consequence of the Hohenberg-Kohn theorem of density functional theory is the existence of
a bijection between the local density and the ground-state many-body wave function. Here we study the
problem of constructing approximations to the Hohenberg-Kohn map using a statistical learning approach.
Using supervised deep learning with synthetic data, we show that this map can be accurately constructed
for a chain of one-dimensional interacting spinless fermions in different phases of this model including the
charge ordered Mott insulator and metallic phases and the critical point separating them. However, we also
find that the learning is less effective across quantum phase transitions, suggesting an intrinsic difficulty in
efficiently learning nonsmooth functional relations. We further study the problem of directly reconstructing
complex observables from simple local density measurements, proposing a scheme amenable to statistical
learning from experimental data.
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Introduction.—The Hohenberg-Kohn (HK) theorem [1]
is a founding principle of density functional theory (DFT).
It establishes that there exists a bijective map between the
local density and the one-body potential. This, remarkably,
also implies a bijective relation between the local density
and the ground-state many-body wave function of the
system ψðr1; r2;…; rNÞ, which is thus a unique functional
of the one-particle density ρðrÞ. Hence, there is also an
injective map connecting the local density with any
observable of interest (such as two-point density correlation
functions) in the ground state:

where DTWF is the density to ground-state wave function
map and DTCF labels the density to two-point density
correlator map. However, the exact form of the DTWF and
DTCF maps is unknown in most cases [2,3] and phenom-
enological approximations are required to construct them.
These approximations typically lead to inaccurate predic-
tions when the electrons are strongly correlated [4,5], as in
Mott insulating phases.
With the recent interest in machine learning (ML)

techniques applied to physical sciences [6], data-driven
approaches have successfully been applied to DFT for
different applications. Some works use ML techniques in
the Kohn-Sham (KS) scheme [7], to improve or

parametrize exchange-correlation functionals and poten-
tials [8–14], the noninteracting kinetic energy functionals
and their derivatives [8,15–18] or the full density functional
[18–20]. Other works take a more direct approach based on
the HK theorem to learn the potential to density map and
the potential to ground-state energy map [21], potential to
energy spectrum map [22], infer relevant energies of the
system from the local density [23] or the external potential
[24]. Despite this progress, little is known about the
practical computational complexity of the statistical learn-
ing of the direct DTWF and DTCF HK maps, and in what
regimes the learning approach can fail.
In this Letter, we systematically investigate the problem

of reconstructing the ground-state wave function (DTWF)
and the correlation functions (DTCF) from the knowledge
of the local density, using supervised deep learning.
Focusing on a lattice model of interacting electrons, we
show that the DTWF map can be learned for different
phases of the model, including Mott and metallic phases
and the critical point. The explicit ML representation of the
DTWF map allows for the possibility to gain insight into
this high dimensional bijection and its properties in models
with finite basis sets such as small molecules. In particular,
we find that learning the map through a quantum phase
transition (QPT) leads to intrinsic representational diffi-
culties. Finally, we show that the DTCF map allows one to
compute physical quantities of interest—like two-point
correlators—and their scaling laws directly from the local
density of the system. Specifically, we could extract
the Luttinger liquid (LL) parameter, finite-size scaling

PHYSICAL REVIEW LETTERS 125, 076402 (2020)

0031-9007=20=125(7)=076402(6) 076402-1 © 2020 American Physical Society

https://orcid.org/0000-0001-6852-7296
https://orcid.org/0000-0002-8887-4356
https://orcid.org/0000-0001-9479-9682
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.076402&domain=pdf&date_stamp=2020-08-12
https://doi.org/10.1103/PhysRevLett.125.076402
https://doi.org/10.1103/PhysRevLett.125.076402
https://doi.org/10.1103/PhysRevLett.125.076402
https://doi.org/10.1103/PhysRevLett.125.076402


behavior, and logarithmic corrections from the ML-con-
structed correlation functions. This opens the possibility of
reconstructing nontrivial physical quantities directly from
experimental x-ray measurements of the electron density
[25,26], or learning these maps from quantum simulation
experiments [27–34].
The Hohenberg-Kohn theorem.—The fundamental theo-

rem of DFT is formulated in the context of interacting
electrons subjected to an external potential vðrÞ, whose
Hamiltonian has the form

Ĥ ¼ K̂ þ Û þ V̂; ð1Þ

where K̂ is the kinetic energy operator, Û are the two-body
interactions, and V̂ is the one-body external potential. For
fixed K̂ and Û, the HK theorem states that there is a one-to-
one correspondence between the local electron density in
the ground-state ρðrÞ and the external potential vðrÞ.
Given the generality of this theorem, we consider in this

work a Hamiltonian which is simpler than the full inho-
mogeneous electron gas, but has a structure similar to
Eq. (1), namely, a 1D extended Hubbard model of spinless
Fermions in a lattice of N sites with periodic boundary
conditions:

H ¼ −t
X

i

½c†ðxiÞcðxiþ1Þ þ H:c:�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

K̂

þU
X

i

nðxiÞnðxiþ1Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Û

−
X

i

½vðxiÞ þ μ�nðxiÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V̂

; ð2Þ

where c†ðxiÞ and cðxiÞ are the Fermion creation and
annihilation operators acting on lattice sites xi and
nðxiÞ ¼ c†ðxiÞcðxiÞ. t is the hopping amplitude, U is the
density-density interaction, vðxiÞ is the external potential,
and μ is the chemical potential. Throughout this work, we
will consider the case when t ¼ 1 and U ¼ μ, correspond-
ing to an occupancy of one particle per two sites on average
(half-filled band). A straightforward extension of the HK
theorem to this model establishes that, on finite systems,
the ground-state wave function components are a unique
function of the local density ρi ¼ hψ jnðxiÞjψi.
In the absence of an external potential, the model in

Eq. (2) has a phase transition at U=t ¼ 2 of the Kosterlitz-
Thoules type [35]. For U=t > 2 the system is in the Mott
insulator gapped phase, which is a long-range ordered
charge density wave phase with spatial period 2a, where a

FIG. 1. (a) Diagram of the neural network architecture used to represent the ρi → jψi (DTWF) map. (b) U=t ¼ 1 (metal), (c) U=t ¼ 2
(critical), (d) U=t ¼ 4 (Mott insulator). Left: Normalized histograms of the error functions as defined in Eq. (4) over the validation set.
Right: Predicted versus exact wave function components in the occupation number basis, given two different random potentials depicted
in the insets. System size is N ¼ 14. Red dots correspond to the potential in the inset in the lower right corner and blue ones to the
potential in the upper left inset.
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is the lattice constant. For U=t < 2 the system is a gapless
LL metal [36,37] characterized by power-law decaying
correlation functions:

hnðxiÞnðxiþlÞi ∼
C1

l2
þ C2ð−1Þl

l2K
; ð3Þ

where Ci are nonuniversal amplitudes and K is the LL
parameter, which is known exactly from Bethe ansatz:
1=K ¼ ð2=πÞ arccosð−U=2tÞ [38]. The critical point fol-
lows the same scaling with an additional

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðclÞp

con-
tribution multiplying the staggered term [38,39].
Density to wave function map.—First, we study the

possibility of learning the DTWF map using a deep fully
connected feed-forward neural network [40]. We consider
finite-size systems with N ¼ 7 to N ¼ 14 lattice sites. The
input to the network is theN values of the local density ρi and
the output are the 2N components of the ground-state wave
function ψðσÞ in the occupation basis: jψi ¼ P

σ ψðσÞjσi,
where σ ≡ fn1;…; nN∶ni ¼ 0; 1g labels a specific occupa-
tion configuration. A representation of this architecture is
shown in Fig. 1(a). All the layers are connected by the
composition of an affine transformation and a nonlinear
rectifier function, ReluðxÞ ¼ maxð0; xÞ, except for the out-
put layer, where the chosen nonlinearity enforces the
normalization of the wave function—see Supplemental
Material [41] for further information.
Supervised learning is used to find the set parameters of

the network fθg that minimize the infidelity of the wave
function:

εtrainðfθgÞ ¼ 1 − jhψ tarjψpredðfθgÞij; ð4Þ

where jψ tari and jψpredi are the target and predicted wave
functions, respectively. For different U=t values, different
networks are trained using a set of ground-state wave
functions corresponding to Hamiltonians of the form of
Eq. (2), with uniformly sampled random potentials with the
restriction jvðxiÞj ≤ 1=2. This ensures that the training set
is not biased. The size of the training set is chosen to

increase linearly with system size. The construction of the
density function is tested in the two phases of the system
U=t ¼ 1 (metallic), U=t ¼ 4 (Mott insulator), and at the
critical point U=t ¼ 2. The accuracy of the learning is
tested on a validation set, as per standard machine-learning
practice [40]. We also test the capability of the ML-
constructed wave functions to reconstruct the correspond-
ing local densities and ground-state energies—see
Supplemental Material [41].
The left panels in Figs 1(b)–1(d) show histograms of the

error, as defined in Eq. (4), when constructing the wave
function over the validation set for different values of
U=t. The right panel shows correlation plots of exact versus
ML-constructed wave function weights given two random
potentials depicted in the insets. The histograms show
narrow peaked error distributions. The position of the
peak is not strongly affected by the system size or
the value of U=t. In all of the cases the peak is centered
around error values no larger than εvalidation ¼ 3.10−4

(overlaps of jhψ tarjψpredij ¼ 0.9997). The correlation plots
show that the network can accurately predict all of the wave
function components, without displaying significant devi-
ations—outside rounding errors. Achieving a high degree
of accuracy on examples not present in the training set is an
indication that the network has not been overfitted, and
indeed captures the underlying connection between the
local density and the ground-state wave function.
We also test the neural network on a collection of

“structured” (i.e., nonrandom) potentials, which are highly
unlikely to belong to the training set. The potentials tested
are sketched in Fig. 2(a) in a lattice with N ¼ 14 sites.
Figure 2(b) displays the error—as defined in Eq. (4)—as a
function ofN for the different potentials tested at the critical
point U=t ¼ 2. Except for the staggered potential, where
the error is up to 2 orders of magnitude larger than the
typical errors in the validation sets, all of the other cases
display errors that are of the same order of magnitude as the
ones found in the validation sets.
Learnability across a quantum phase transition.—The

lack of accuracy found in the staggered potential case is

FIG. 2. Performance of the network in structured potentials. (a) Sketch of the tested potentials in a lattice with N ¼ 14 sites. Potentials
are quadratic (blue), no potentialrma (red), periodic with period N=4 (green), and staggered (orange). Black dots represent the position of
the lattice sites. Panels (b) and (c) follow the same color code. (b) Error as defined in Eq. (4), as a function of the system size, when
predicting the ground-state wave function given the potentials in panel (a). (c) Two-point density correlation functions computed from
exact (dots connect by dashed lines) and ML-predicted (black crosses) wave functions. Only results for an even number of lattice sites
are shown in this case as the ground state with an odd number of sites is degenerate.
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striking and points to a likely fundamental difficulty in the
description of this specific regime. The quantitative and
qualitative loss of accuracy in the learned DTWF map is
particularly evident in two-point correlation functions, as
displayed in Fig. 2(c). This means that in the staggered
case, the proposed ML architecture and training method are
not capable of capturing the behavior of the DTWF map
in this region of the space of applied potentials. Similar
results are found in the metallic and Mott phases—see
Supplemental Material [41].
To make sense of these discrepancies, we notice that the

staggered potential stands on different physical grounds
than the other structured cases analyzed. In this one-
dimensional system, an infinitesimally small staggered
potential induces a QPT corresponding to the opening of
a gap, in turn leading to staggered ordering of the local
density [38]. More generally, this QPT is driven by the
amplitude λ of the staggered potential. In the small λ limit,
ρi ¼ ρsð−1Þi with ρs ∝ λμ the staggered density. For the
U=t values analyzed in this work μ < 1 [38]. Therefore, the
derivative of the density with respect to the amplitude of
the staggered potential diverges at the critical point. In the
context of DFT, this means that the functional is not smooth
in the presence of a QPT, since the density functional is
constructed by a Legendre transformation from the poten-
tial, and the dependence of the density on the potential is
nonanalytic in this case. This nonanalytic behavior leads to
an intrinsic difficulty in learning the map using smooth
functional approximations—such as neural networks—and
unbiased sampling from random one-body potentials.
Density to correlation functions map.—Even in those

regimes where the DTWF map is efficiently learned, the
practical implementation of the statistical learning scheme
is constrained to small systems by the exponential growth
of the wave function with the number of lattice sites. As an
alternative, here we explore the possibility of directly
constructing the DTCF map with deep convolutional

networks, whose size does not scale exponentially with
system size. They allow us to bypass the construction of the
exponentially large wave function to directly compute
observables of interest, in this case density-density corre-
lators. The input of the convolutional network is the N
values of ρi. The output is the ðN2 − NÞ=2 different pairs of
correlation functions of the system. The chosen architecture
consists of six convolutional layers with N filters each. The
size of the kernel of the convolutions is 2. All of the
convolutional layers use a Relu activation function. After
the last convolutional layer, the output of the filters was
flattened and connected using a fully connected layer with a
SigmoidðxÞ ¼ 1=ð1þ e−xÞ activation function. The archi-
tecture is shown in panel (a) of Fig. 3. Significantly larger
systems are studied in this case ranging from N ¼ 18 to
N ¼ 50 lattice sites. The training sets were the same as the
ones used in the previous section, but generated using
density matrix renormalization group (DMRG) on ITensor
[43]. The weights of the network are obtained by minimiz-
ing the relative error averaged over all the correlation pairs
in each sample of the training set. Different networks are
trained for the three different values of U=t. The perfor-
mance of the networks is tested in the validation set—see
Supplemental Material [41].
Figure 3(b) shows the value of exact versus ML-

constructed two-point density correlation functions in a
system with N ¼ 50 lattice sites, given the random poten-
tial depicted in the inset, at three different values of U=t.
The plot demonstrates that the convolutional network is
capable of accurately finding the values of the correla-
tion functions. Figure 3(c) shows the value of the LL
exponent—see Eq. (3)—obtained from the DMRG and the
ML-constructed density-density correlation functions for
different values of U=t. The value of K is obtained from
the power law behavior of the correlation functions after
removing the C1=l2 background. The values of K obtained
from the ML correlation functions are in good agreement

FIG. 3. (a) Scheme of the convolutional network used to represent the ρi → hnðxjÞnðxkÞi (DTCF) map. The output of the network is
sorted to produce the correlation function map. (b) Exact versus ML-constructed values of the two-point density correlation functions
given the random potential shown in the inset, for different values ofU=t in a lattice with N ¼ 50 sites. Training sets are generated using
DMRG in this case. (c) Luttinger liquid parameter as a function of U=2t. The dashed line shows the exact value from Bethe ansatz. Red
dots correspond to the estimated value using DMRG in a lattice with N ¼ 50 sites and blue dots correspond to the estimated value from
the ML-predicted correlation functions.
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with both the exact solution and the DMRG values
(see Supplemental Material [41] for the raw data of the
correlation functions). The small discrepancies arise from
finite-size effects. Finite-size scaling allows us to capture
more accurate estimates ofK and the logarithmic correction
in the critical point; see Ref. [41]. These results show that
the construction of the exponentially large wave function
can be bypassed to accurately reconstruct complex observ-
ables of interest and their scalings in the three regimes of
(i) power-law decaying correlations, (ii) true long-range
order, (iii) critical point between the two. The performance
of this method is similar for N ¼ 18 and N ¼ 50—see
Supplemental Material [41]—demonstrating its scalability.
Conclusion.—In this Letter we proposed a method based

on supervised training deep learning to successfully con-
struct the local density to ground-state many-body wave
function map and the local density to correlation functions
maps for a model of interacting spinless Fermions in a 1D
lattice. Hence, we provide evidence that machine learning
tools provide a suitable framework to represent these high-
dimensional density functionals in the two phases of the
system, including the charge ordered Mott insulator and the
critical point. The results serve as a proof of concept to
open new lines of research where parameters from a
suitable variational ansatz, such as neural network quantum
states [44], could be predicted instead of the exponentially
many wave function components. Thanks to the insight
provided by the explicit construction of the DTWF map,
we also found that the learning performance deteriorates
through a quantum phase transition, due to the nonanalytic
behavior of the density functional. Finally, it was shown
that the (exponentially costly) reconstruction of the wave
function can be bypassed to directly infer complex physical
observables from the local density only. An interesting
open research direction concerns the application of this idea
to larger system sizes. Combining our approach with an
intrinsic notion of locality in the correlations and the
potential transfer of learning techniques could open the
possibility to infer correlation functions in larger systems
from learned features in smaller ones.
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