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Wall-bounded turbulent flows can take different statistically stationary turbulent states, with different
transport properties, even for the very same values of the control parameters. What state the system takes
depends on the initial conditions. Here we analyze the multiple states in large-aspect ratio (Γ) two-
dimensional turbulent Rayleigh-Bénard flow with no-slip plates and horizontally periodic boundary
conditions as model system. We determine the number n of convection rolls, their mean aspect ratios
Γr ¼ Γ=n, and the corresponding transport properties of the flow (i.e., the Nusselt number Nu), as function
of the control parameters Rayleigh (Ra) and Prandtl number. The effective scaling exponent β in Nu ∼ Raβ

is found to depend on the realized state and thus Γr, with a larger value for the smaller Γr. By making use of
a generalized Friedrichs inequality, we show that the elliptical shape of the rolls and viscous damping
determine the Γr window for the realizable turbulent states. The theoretical results are in excellent
agreement with our numerical finding 2=3 ≤ Γr ≤ 4=3, where the lower threshold is approached for the
larger Ra. Finally, we show that the theoretical approach to frame Γr also works for free-slip boundary
conditions.
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For laminar flows, flow transitions can often be calcu-
lated from linear stability analysis. Such an analysis not
only gives the critical value of the control parameter at
which the instability sets in, but it also gives the wavelength
of the emerging structure. Famous classical examples for
linearly unstable wall-bounded flows are the onset of
convection rolls in Rayleigh-Bénard convection or the
onset of Taylor rolls in Taylor-Couette flow [1]. In both
cases, the rolls of the most unstable mode have a certain
wavelength which follows from the linear stability analysis.
With increasing flow driving strength, more and more
modes become unstable, and in the fully turbulent case the
base flow is unstable to basically any perturbation.
What then sets the size of the flow structures in such

fully turbulent wall-bounded flow? Several findings have
suggested that wall-bounded turbulent flows can take
different statistically stationary turbulent states, with differ-
ent length scale of the flow structures and with different
transport properties, even for the very same values of the
control parameters. Examples for the coexistence of such
multiple turbulent states include turbulent (rotating)
Rayleigh-Bénard convection [2–8], Taylor-Couette turbu-
lence [9–11], double-diffusive convection turbulence [12],
von Karman flow [13–16], rotating spherical Couette flow
[17], Couette flow with span-wise rotation [18], but also

geophysical flows [19,20] such as in ocean circulation
[21–23], in the liquid metal core of Earth [24–27], or in the
atmosphere [28,29].
The occurrence of multiple states in fully turbulent

flows can be considered unexpected since, according to
Kolmogorov [30], for strong enough turbulence, the fluc-
tuations should become so strong that the whole highly
dimensional phase space is explored. Of course, one could
argue that in the above given cases and examples, the
turbulence driving has not yet been strong enough to reach
that state and that the occurrence of multiple turbulent
states in wall-bounded turbulence may be a finite size
effect, but in any case even then it remains open what sets
the range of allowed sizes of the flow structures in such
turbulent flows.
To illuminate this question, as a model system we picked

two-dimensional (2D) Rayleigh-Bénard (RB) turbulence,
the flow in a closed container heated from below and
cooled from above [31–33]. The control parameters are the
Rayleigh number Ra, which is the dimensionless temper-
ature difference between the plates, the Prandtl number Pr,
which is the ratio between kinematic viscosity (ν) and
thermal diffusivity (κ), and the aspect ratio Γ ¼ W=H, i.e.,
the ratio between horizontal (W) and vertical (H) extension
of the system. The response parameters are the Nusselt
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number Nu¼ QH=ðkΔÞ and the Reynolds number
Re ¼ UH=ν, which indicate the dimensionless heat trans-
port and flow strength in the system. HereQ is the heat flux
crossing the system, k the thermal conductivity, Δ the

temperature difference at the plates, and U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hu2iV;t
q

the

time and volume-averaged velocity.
The flow dynamics is given by the Boussinesq approxi-

mation of the Navier-Stokes and the advection-diffusion
equation, with the corresponding boundary conditions
(BCs) for the temperature and velocity fields. For the latter
at the plates we will first apply no-slip BCs, but later also
examine free-slip BCs—a difference which will turn out to
be major for the range of allowed states. Periodic BCs are
used in the horizontal direction.
We are very much aware of the differences between 2D

and 3D RB flow [34], but in particular for large Pr ≥ 1

there are extremely close similarities between 2D and 3D
RB flows, and we wanted to pick a model system for which
(i) we can reasonably explore the considerable parameter
space for a large enough number of initial flow conditions
and (ii) we have the chance to obtain exact analytical results
for the range of allowed flow structures.
The parameter range we will explore is for large Prandtl

numbers in the range 1 ≤ Pr ≤ 100, for Rayleigh numbers
in the range 107 ≤ Ra ≤ 1010 and for large Γ up to Γ ¼ 32.
Note that in 2D RB, multiple coexisting turbulent states had
been found before for Ra ¼ 107, Pr ¼ 0.7 and Γ ≈ 0.64
(i.e., in an extremely limited range of the parameter space)
[3], but not for such large Γ and Ra as we explore here, as
the range of chosen initial flow conditions was not large
enough [4], and clearly not as general and omnipresent as
we will find here.
The direct numerical simulations were done with an

advanced finite difference code [35] with the criteria for
the grid resolution, as found to be required in Ref. [36]. The
code has extensively been tested and benchmarked against
other codes [37] and applied in 2D RB even up to very large
Ra¼ 4.64 × 1014 [38,39]. More simulation details for all
explored cases can be found in the Supplemental Material. In
order to trigger the possible convection roll state, we use
different initial roll states generated by a Fourier basis:
uðx; zÞ ¼ sinðnðiÞπx=ΓÞ cosðπzÞ, wðx;zÞ¼−cosðnðiÞπx=ΓÞ
sinðπzÞ, where nðiÞ indicates the initial number of rolls in the
horizontal direction. The initial temperature has a linear
profile with random perturbations.
In Figs. 1(a) and 1(b) we show the temporal evolution of

some flow characteristics for six different initial flow
conditions for the case of Ra ¼ 1010, Pr ¼ 10, and
Γ ¼ 8. We vary the initial number nðiÞ of rolls from nðiÞ ¼
4 to nðiÞ ¼ 14, implying aspect ratios of the initial rolls

from ΓðiÞ
r ¼ Γ=nðiÞ ¼ 2 to ΓðiÞ

r ¼ 4=7. As flow character-
istics we picked the Reynolds number ratio Rez=Rex and
the Nusselt number Nu. Here Rez ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

hw2iV
p

H=ν is the

volume averaged vertical Reynolds number and Rex ¼
ffiffiffiffiffiffiffiffiffiffiffi

hu2iV
p

H=ν the horizontal one, wherewðtÞ and uðtÞ are the
respective velocities. As one can see in Figs. 1(a) and 1(b),
depending on the six initial conditions, over the very long
time of more than 104 free fall time units, the system
evolves to either of three different final turbulent states, all
with different Reynolds number ratio Rez=Rex and Nusselt
number Nu. The smaller the final mean aspect ratio Γr of
the rolls, the larger the Reynolds number ratio Rez=Rex and
Nu, due to more plume-ejecting regions which have strong
vertical motion.
The time evolution of some of the six different initial

states (nðiÞ ¼ 6, 14), analyzed in Figs. 1(a) and 1(b), can be
seen in the Supplemental Movies [40], displaying roll
splitting and merging events. The states with large initial
rolls (corresponding to nðiÞ ¼ 4, 6) break up quickly, while

(a)

(b)

(c)

FIG. 1. (a), (b) Time evolution of (a) Rez=Rex and (b) Nu for

different initial roll states, Ra ¼ 1010, Pr ¼ 10, Γ ¼ 8. ΓðiÞ
r ¼

Γ=nðiÞ is the initial and Γr ¼ Γ=n the final mean aspect ratio of
the rolls; nðiÞ is the initial and n the final number of the rolls. Note
the logarithmic scales of the time axes. (c) Snapshots of the
temperature fields for the three statistically stable turbulent states
for Γr ¼ 1 (n ¼ 8), Γr ¼ 4=5 (n ¼ 10), and Γr ¼ 2=3 (n ¼ 12)
and the corresponding Nusselt numbers, for Ra ¼ 1010, Pr ¼ 10,
and Γ ¼ 8. All subfigures are for no-slip BCs.
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those with small initial rolls (nðiÞ ¼ 14) first undergo a
transition into an unstable 12-roll state (with smallerRez=Rex
than the stable one) as seen in Fig. 1(a), followed bymerging
events of two neighboring convection rolls. Though both the
Reynolds number ratio and the Nusselt number keep on
fluctuating in time, reflecting the turbulent nature of the
states, the three final statistically stable turbulent states are
clearly distinguished. We characterize them by the final
aspect ratio of their rolls, namely Γr ¼ 1, Γr ¼ 4=5, and
Γr ¼ 2=3, corresponding to n ¼ Γ=Γr ¼ 8, 10, and 12 rolls,
respectively. Snapshots of these states and their correspond-
ing Nusselt numbers are shown in Fig. 1(c). As one can see,
the larger the number of rolls, the better the (heat) transport
properties of the system, a characteristics whichwas found in
Taylor-Couette flow before [9] and which can intuitively be
understood, due to the larger number of emitted plumes at the
interfaces between the rolls.
Consequently, when the cell aspect ratio Γ is stretched,

the stretching of the mean aspect ratio Γr ¼ Γ=n of the
corresponding individual rolls is accompanied with a
decrease of the corresponding Nusselt number, as seen
in Figs. 2(a) and 2(b). Though this behavior has been seen
before [4], in Figs. 2(a) and 2(b), we clearly see the
coexistence of the different turbulent states. The determin-
ing relevance of the final mean aspect ratio Γr ¼ Γ=n of the
individual rolls for the Nusselt number Nu and Reynolds
number Re in the statistically stationary case is nicely
demonstrated in Figs. 2(c) and 2(d), where we show that the
dependences NuðΓrÞ and ReðΓrÞ are universal and irre-
spective of the individual values of Γ or n.

Remarkably, not only the absolute value of the Nusselt
number depends on Γr, but even the effective scaling
behavior of Nu with Ra, as can be seen in Fig. 3(a). The
same holds for the Reynolds number, Fig. 3(b). In both
cases the effective scaling exponent is larger for turbulent
states with smaller mean aspect ratio Γr of the rolls [see the
values given in Figs. 3(a) and 3(b)]; i.e., when the system
can accommodate a larger number n ¼ Γ=Γr of rolls,
presumably reflecting the larger disorder and the larger
number of emitted plumes for those states.
From Figs. 3(a) and 3(b), we also see that turbulent states

with a too large aspect ratio Γr of their rolls cease to exist
with increasing Ra. Which turbulent states—as character-
ized by the mean aspect ratio Γr of their rolls—are
statistically stable for given Ra and Pr can be seen from
the phase diagrams in Fig. 4. For fixed Pr ¼ 10, all
statistically stable turbulent states in the no-slip case have

(a)

(c) (d)

(b)

FIG. 2. (a) Nu and (b) final aspect ratio Γr ¼ Γ=n of individual
rolls, as function of Γ, for different turbulent states. The numbers
and colors in the legend denote the number n of convection rolls
of that state. (c) Nu and (d) Re as functions of Γr ¼ Γ=n for three
different values of Γ. In this figure Ra ¼ 109 and Pr ¼ 10 and the
BCs are no slip.

(a) (b)

FIG. 3. (a) Compensated Nusselt number Nu=Ra1=3 and
(b) compensated Reynolds number Re=Ra2=3, as functions of
Ra, for four different turbulent states as characterized by Γr, for
Pr ¼ 10, Γ ¼ 8, and no-slip BCs. The effective scaling exponents
β and γ in the scaling relations Nu ∼ Raβ and Re ∼ Raγ are shown
next to the curves in the respective color of the state and curve.

(a) (b)

(c) (d)

FIG. 4. Phase diagram in the (a),(c) Ra − Γr and (b),(d) Pr−Γr
parameter space for (a),(b) no-slip BCs and (c),(d) free-slip BCs:
(a) Pr ¼ 10, Γ ¼ 8; (b) Ra ¼ 109, Γ ¼ 8; (c) Pr ¼ 10, Γ ¼ 16;
(d) Ra ¼ 108, Γ ¼ 16. Black circles denote that the correspond-
ing roll state is stable, whereas red crosses mean that it is not
stable. The theoretical estimates for the transitions between the
regimes are shown as solid lines.
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an aspect ratio Γr in the range 2=3 ≤ Γr ≤ 4=3, in the Ra-
range analyzed in this Letter. With increasing Ra, we see
the range moving towards smaller values of Γr, e.g., with
1 ≤ Γr ≤ 4=3 for Ra¼ 108 and 2=3≤Γr ≤ 1 for Ra ¼ 1010,
see Fig. 4(a). For Ra ¼ 109, we find 2=3 ≤ Γr ≤ 1 for all Pr
analyzed in this Letter, see Fig. 4(b).
We now set out to mathematically understand the range

of Γr the system can take for given control parameters.
First, we recall that the roll size in 3D flows [41] is
restricted by the elliptical instability [42–44]. Similarly,
the strain-vorticity balance in 2D flows is determined by
the elliptical shape of the rolls. Thus we assume that the
essence of the flow is a set of elliptical rolls, each of
which can be described by a stream function Ψðx; zÞ ¼
ðξþ ηÞðz2=2Þ þ ðξ − ηÞðx2=2Þ with ξ ≥ η ≥ 0.
The aspect ratio of the rolls, Γr, is directly related

to the strain η and (half of) the vorticity ξ through the
relation Γr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðξþ ηÞ=ðξ − ηÞp

, corresponding to η=ξ ¼
ðΓ2

r − 1Þ=ðΓ2
r þ 1Þ. Averaging u2 and w2 over the area

½−ΓrH=2;ΓrH=2� × ½−H=2; H=2�, where uðx; zÞ ¼ ∂Ψ=
∂z and wðx; zÞ ¼ −∂Ψ=∂x, we obtain Rex ¼ ΓrRez, which
is in agreement with the simulations, see [40].
The Reynolds number of the roll, Rer, satisfies

Re2 ≥ Re2r ¼ Re2x þ Re2z ¼ ξðξþ ηÞH4=ð6ν2Þ: ð1Þ

To form a roll, the strain must be bounded by the vorticity,
η ≤ ξ, which gives Re2 ≥ η2H4=ð3ν2Þ. We now make
use of the exact global balance for the total enstrophy
Ω2 and the mean kinetic energy dissipation rate ϵu [45],
namely, 4νξ2 ¼ νΩ2 ¼ ϵu ¼ ν3H−4ðNu − 1ÞRa Pr−2. With
the definition

B≡ Re2Pr2Ra−1ðNu − 1Þ−1 ð2Þ

(which can be seen as nondimensionalized ratio between
the kinetic energy and the energy dissipation rate), from the
relation between η=ξ and Γr and the inequalities (1) and
η ≤ ξ we obtain B ≥ ðΓ2

r − 1Þ2=ðΓ2
r þ 1Þ2=12, which gives

an estimate of the maximal size of the rolls as

Γr ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
ffiffiffiffiffiffi

3B
pq

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2
ffiffiffiffiffiffi

3B
pq

: ð3Þ

Figures 5(a) and 5(b) show the Ra and Pr dependences of
B, obtained numerically for the no-slip BCs, as well as their
data fits (see [40]). As seen from the phase diagrams in
Figs. 4(a) and 4(b), using these fits in the upper bound (3)
gives quite reasonable estimates for the maximal mean roll
size of statistically stable turbulent states, see upper lines in
Figs. 4(a) and 4(b).
We now come to the lower bound of the window of

allowed Γr. First note that Γr cannot be infinitesimally
small, because, in order to form the rolls, the following

should hold: Γr ≥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2
ffiffiffiffiffiffi

3B
pp

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
ffiffiffiffiffiffi

3B
pp

. One can
obtain a more accurate estimate when considering a
rectangular region that frames a particular roll. Under
the assumption that the velocity components achieve their
maximum at the boundaries of this rectangle or vanish
there, there exists a certain constant c > 2 such that

c2u2 ≤ Γ2
rH2ð∇uÞ2. We call this relation the generalized

Friedrichs inequality and derive it in the Supplemental
Material [40]. This inequality gives as estimate for the
lower bound of Γr,

Γr ≥ c
ffiffiffiffi

B
p

; ð4Þ

which is plotted as lower lines in Figs. 4(a) and 4(b) for
c ¼ 9. As can be seen, the theoretical slopes reflect the
general tendency of the numerical results. Note however
that at this point we cannot calculate the absolute value of
the transition, i.e., the value of c. We also remark that in the
case when the container is too slender to keep two rolls
[with the size, according to (4)]; i.e., when Γ < 2c

ffiffiffiffi

B
p

, the
flow can take the form of a zonal flow only. Thus, in the no-
slip case, the zonal flow configuration [46,47] is possible,
but only in small-aspect ratio containers.
Our approach also leads to reasonable estimates for the

window of allowed statistically stable states in the free-slip
case, which was numerically analyzed in Ref. [48]: taking
the dependences Nu(Ra,Pr) and Re(Ra,Pr) for the various
roll states from that work, with the definition (2) we obtain
BðRa; PrÞ, see Figs. 5(c) and 5(d). In this case, the values of
B are significantly larger, allowing much larger rolls than in
the no-slip case. Furthermore, when the inequality (1) holds

(a) (b)

(c) (d)

FIG. 5. B ¼ f½Re2Pr2�=½RaðNu − 1Þ�g, as functions of (a),(c)
Ra and (b),(d) Pr, for (a),(b) no-slip BCs and (c),(d) free-slip BCs.
(a) Pr ¼ 10, Γ ¼ 8; (b) Ra ¼ 109, Γ ¼ 8; (c) Pr ¼ 10, Γ ¼ 16;
(d) Ra ¼ 108, Γ ¼ 16. The solid lines are fits to the data (see the
Supplemental Material [40]). Note that the values of B in the no-
slip case (a),(b) are much smaller than those in the free-slip case
(c),(d).
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for any η, also when the strain is as strong as the vorticity,
η ¼ ξ, the rolls can be of any size 1 ≤ Γr ≤ Γ=2 and the
zonal flows are possible as well. This situation happens
when B ≥ 1=12. Thus, very large-Γr states are possible,
while particular state realizations depend on the initial
conditions. Indeed, this is consistent with the numerical
findings in Ref. [48], which are shown in Figs. 4(c) and
4(d). Note in particular that in Ref. [48] an as large stable
state as Γr ¼ 64 (for Γ ¼ 128, Ra ¼ 108, Pr ¼ 10)
was found.
What about the lower bound for allowed Γr in the free-

slip case? In contrast to the upper bound, it always exists
and just as in the no-slip case, by arguments again based on
the generalized Friedrich inequality (see the Supplemental
Material [40]), we can find it. In Figs. 4(c) and 4(d) the
result for the smallest Γr is plotted. It is based on the
estimate (4) and uses the fits from Figs. 5(c) and 5(d) for
the smallest values of B with c ¼ 7. Again, the theoretical
slopes in the Γr − Ra and Γr − Pr phase diagrams reflect
the general trend of the numerical results.
In conclusion, we have numerically shown the coexist-

ence of multiple statistically stable states in turbulent RB
convection with no-slip BCs, with different mean aspect
ratios of their turbulent rolls and different transport proper-
ties, even scaling wise. We then theoretically illuminated
what principles determine the allowed window of the mean
size of the turbulent convection rolls (and thus their absolute
number), occurring from the ellipticity of the convection
rolls. These criteria also work for the free-slip case.
Even though a 2D model may seem somehow artificial,

there are various cases in which the flow dynamics is
mostly 2D, e.g., because of geometrical confinement,
stratification, or background rotation. Therefore our model
in itself is relevant, but the main ideas of our approach can
also be generalized to other wall-bounded turbulent flows,
such as rotating Rayleigh-Bénard flow, Taylor-Couette
flow, Couette flow with span-wise rotation, double diffu-
sive convection, etc., and also to geophysical flows such as
those mentioned in the introduction. They may also give
guidance for turbulence flow control, in order to predict
which turbulent states are feasible to be realizable.
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