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The critical phases, being delocalized but nonergodic, are fundamental phases different from both the
many-body localization and ergodic extended quantum phases, and have so far not been realized in
experiment. Here we propose an incommensurate topological insulating model of AIII symmetry class to
realize such critical phases through an optical Raman lattice scheme, which possesses a one-dimensional
(1D) spin-orbit coupling and an incommensurate Zeeman potential. We show the existence of both
noninteracting and many-body critical phases, which can coexist with the topological phase, and show that
the critical-localization transition coincides with the topological phase boundary in noninteracting regime.
The dynamical detection of the critical phases is proposed and studied in detail based on the available
experimental techniques. Finally, we demonstrate how the proposed critical phases can be achieved within
the current ultracold atom experiments. This work paves the way to observe the novel critical phases.
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Introduction.—Anderson localization (AL) is a highly
explored fundamental quantum phenomenon in condensed
matter physics [1], showing the disorder-induced localiza-
tion of electronic wave functions. Recent experiments have
observed AL in an one-dimensional (1D) optical lattice
with random disorder [2] and in incommensurate quasi-
periodic optical lattice [3,4]. The 1D disordered or incom-
mensurate quantum systems may stay localized when
interactions are considered, leading to the many-body
localization (MBL), which is an ergodicity-breaking phase.
The existence of MBL phase has been well established in
both theory [5–11] and experiment [12–16].
Between the localization and ergodic extended phases, a

third type of fundamental phases, called critical phases, can
exist without or with interactions, with the latter case
leading to the many-body critical (MBC) phase which is an
extended but nonthermal quantum many-body state [17].
Critical phases are important in understanding the tran-
sitions from localization or MBL to extended phases, and
exhibit various interesting features, including the critical
spectral statistics [18–20], multifractal behavior of wave
functions [21–23], and dynamical evolutions [24–26]. The
1D and 2D systems are localized at infinitesimal random
disorder regime [27], hence may only possibly host the
critical phases in quasiperiodic cases. So far only few
theoretical models may host critical phases, including the
1D extended Aubry-André-Harper model [28] with incom-
mensurate off-diagonal hopping and on site potential
[29–31] which further gives MBC phase in the interacting

regime [17], and the 1D quasiperiodic chain of p-wave
superconductor [32–34]. However, these models are not
realistic in experiment. Further, the experimental diagnostic
for detecting the critical phases is lacking [16].
Recently, the optical Raman lattice has been actively

studied for realizing spin-orbit (SO) coupling and topo-
logical phases with ultracold atoms in both theory [35–44]
and experiment [45–49]. In this Letter, we propose for the
first time an incommensurate optical Raman lattice
scheme to realize the nonergodic critical phases, which
respect chiral symmetry and belong to 1D AIII symmetry
class. This scheme adopts an incommensurate Zeeman
potential that can drive the 1D chiral topological system
into critical phases or localization phases depending on its
strength. The phase diagram with a broad region of critical
phases is obtained, and the detection is further proposed
and studied in detail. This proposal is of high feasibility
and can be immediately achieved based on the current
experiments.
Model.—We consider a 1D SO coupled atomic quantum

gas in optical lattice with an incommensurate Zeeman
potential. The Hamiltonian is

H ¼ H0 þU
X
j

nj↑nj↓; ð1Þ

where U denotes the Hubbard interaction, the particle
number operator ni;σ ¼ c†i;σci;σ at ith site, with ci;σ the
annihilation operator at spin σ ¼ ↑;↓, and
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H0 ¼ −t0
X
hi;ji

ðc†i;↑cj;↑ − c†i;↓cj;↓Þ þ
X
i

δiðni;↑ − ni;↓Þ

þ
X
i

½tsoðc†i;↑ciþ1;↓ − c†i;↑ci−1;↓Þ þ H:c:�: ð2Þ

Here t0 (tso) represents the spin-conserved (spin-flip)
hopping strength between neighboring sites. The
Zeeman splitting δi ¼ Mz cosð2πβiþ ϕÞ with an irrational
number β and a phase offset ϕ denotes the spin-dependent
incommensurate potential with strength Mz, whose reali-
zation will be given later. The Hamiltonian H0 respecting
chiral symmetry defined by σy in spin space renders an
incommensurate optical Raman lattice model, whose
counterpart with a constant uniform Zeeman potential
δi ¼ mz can give rise to the 1D AIII class topological
insulator [35,40,47,50]. For convenience, we set t0 ¼ 1
as the unit energy. The optimal factor β ¼ ð ffiffiffi

5
p

− 1Þ=2
is approached by β ¼ limn→∞ðFn−1=FnÞ, where the
Fibonacci numbers Fnþ1 ¼ Fn−1 þ Fn, with F0;1 ¼ 1
[51]. In noninteracting cases, β ¼ Fn−1=Fn is taken for
the system size L ¼ Fn to ensure a periodic boundary
condition.
Noninteracting critical phase.—We first study the

noninteracting regime with U ¼ 0, where the model can
be diagonalized exactly. In this regime, the phase diagram
can be determined by the fractal dimension (FD), which
for an arbitrary mth eigenstate jψmi ¼

P
L
j ½um;jc

†
j;↑ þ

vm;jc
†
j;↓�jvaci is defined as η ¼ − limL→∞ lnðIPRÞ= lnL,

with the inverse participation ratio (IPR) being
IPRðmÞ ¼ P

jðu4m;j þ v4m;jÞ. It is known that η → 1 (0)
for the noninteracting extended (localized) states,
while 0 < η < 1 for critical states. To characterize the
phases we define the mean IPR over all eigenstates:
MIPR ¼ ð2LÞ−1 P2L

m¼1 IPRðmÞ, and the mean FD
η̄ ¼ − limL→∞ lnMIPR= lnL. In Fig. 1(a), we display η̄
as a function of Mz and tso, which clearly characterize
three distinct phases, i.e., extended (I, with η̄ → 1), critical
(II, with 0 < η̄ < 1), and localized (III, with η̄ → 0) phases.
The phase boundaries is precisely determined from a
finite-size scaling analysis [52]:

Mc
z ¼

�
2jt0 − tsoj; between I and II;

2ðt0 þ tsoÞ; between II and III:
ð3Þ

The FD η also shows that all eigenstates in region II are
critical [Fig. 1(b)]. Note that the critical-localized phase
transition coincides the topological phase boundary. The in-
gap edge states exist in the critical phase, rendering a 1D
AIII class topological critical phase. More details are
presented in the Supplemental Material [52].
The realized phases can be experimentally detected by

probing the dynamical evolution of the spatial profile or
momentum distribution of quantum states. We take the
initial wave function to be a Gaussian wave packet with

half width a at say spin-up and centered at the site j0,
i.e., ψ jðt ¼ 0Þ ¼ ð ffiffiffi

π
p

aÞ−1=2e−ðj−j0Þ2=2a2ð1
0
Þ, and character-

ize the expansion dynamics of the wave packet by using the
mean square displacement

WðtÞ ¼
" X
j;σ¼↑;↓

ðj − j0Þ2hnj;σðtÞi
#
1=2

; ð4Þ

which is a measurement of the width of the wave packet.
The quantityWðtÞ can be detected by direct in situ imaging
with both Bose [2,3] and Fermi [4,57] systems. Figure 2(a)
displays how W evolves with time (in units of ℏ=t0) for
different Mz with a ¼ 5. We observe that for the extended
phase obtained in the relatively smallMz,W reaches a large
and stable value in a fairly short time, while for largeMz,W
remains very small all the time, signifying the localization
of the wave packet. In comparison, for the critical phase,W
grows gradually and slowly, different from both extended
and localization regimes. The different behaviors can be
quantified as

WðtÞ ∼ tκ; ð5Þ
where the dynamical index κ can be shown to take
κ ¼ 1, κ ¼ 0, and κ ≈ 1=2 corresponding to the exten-
ded, localized, and critical phases, respectively [52].
A related observable to distinguish the phases is
W̄ ¼ ð1=NtÞ

PNt
m¼1WðmΔTÞ, which reflects the mean

width of the wave packet over a long period of time.
Here the sum is taken over a stroboscopic time evolution in
steps of ΔT. The results are shown in Fig. 2(b) for different
a with ΔT ¼ 50 and Nt ¼ 40. The two points where
W̄ decreases rapidly indicate the locations of phase
boundaries, which are independent of the width a, and
an approximate plateau in between marks the critical phase.

FIG. 1. (a) The mean FD η̄with L ¼ F14 ¼ 610 as a function of
Mz and tso. Regions I, II, and III correspond to extended, critical,
and localization phases, respectively, and the solid lines represent
the boundaries of different phases. In both extended and critical
phases, the system is a 1D AIII incommensurate chiral topologi-
cal insulator (denoted as CTI). (b) The FD η of all eigenstates for
different Mz with L ¼ 610 and tso ¼ 0.3. The two solid lines
represent the phase boundaries Mc

z ¼ 1.4 and 2.6. Here we set
ϕ ¼ 0.
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The wave packet width a has a clear influence on the
expansion speed, and should be properly prepared for
experimental detection (see the experimental realization
part and the Supplemental Material [52]).
The critical phase can also be detected by measuring the

momentum distribution, which is applicable to the system
for ultracold bosons, given by

nðkÞ ¼ 1

L

XL
i;j¼1

e−ikði−jÞðρ↑ij þ ρ↓ijÞ: ð6Þ

Here ρσij ¼ hψmjc†i;σcj;σjψmi are the single-particle
density matrices with respect to the eigenstate jψmi.
The momentum distribution exhibits localized, multi-
fractal, and extended features in different regions [see
Fig. 2(c)]. Quantitatively, we introduce the fractal index
αðkÞ ¼ − ln nðkÞ= lnL, and examine the minimal index
αmin, which characterizes the distribution peak nmax.
When L→∞, we see αmin¼0, αmin¼1, and 0<αmin<1
for the extended, localization, and critical phases, respec-
tively [Fig. 2(d)]. The experimental diagnostics for differ-
ent phases are summarized in Table I.
Many-body critical phase.—When the Hubbard inter-

action is included, the critical phase in the noninteracting
regime may enter a new fundamental many-body state,
namely, the MBC phase which is extended but not thermal-
izable [17]. We here propose to study the universal quench
dynamics in the interacting regime, which on one hand
confirms the existence of the MBC, and on the other hand
provides experimental detection of the phase. For conven-
ience, we take U ¼ 1 and consider the quarter filling

with the initial state jΨð0Þi ¼ j↑0↑0↑0↑ � � �i, namely,
N ¼ L=2, which can be created by applying a superlattice
initially [12]. Fixing the initial state facilitates the further
measurement, while our main results are independent of the
specific initial configuration.
We study the return probability of the many-body

state under the evolution of the total Hamiltonian H,
given by PðtÞ ¼ jhΨð0ÞjΨðtÞij2, with jΨðtÞi the state
after evolution time t. This observable has been mea-
sured in interacting many-body systems to observe the
dynamical quantum phase transition [58,59]. By using
jΨðtÞi ¼ P

n e
−iEntjφnihφnjΨð0Þi, where jφni are many-

body eigenstates with eigenvalues En, one can obtain the
long-time average of the return probability

P̄ ¼ lim
T→∞

1

T

Z
T

0

dtPðtÞ ¼
X
n

jhφnjΨð0Þij4; ð7Þ

which resembles the IPR with the leading term P̄ ∼D−η
H .

HereDH is the Hilbert space size and η → 1, 0 < η < 1 and
η → 0 for the ergodic, MBC, andMBL phases, respectively
[17]. This result tells that the MBL (ergodic extended)
phase preserves (loses) the local quantum information of
initial state after a long time evolution [61]. The critical
phase loses local information with a lower speed. To further
distinguish MBC from ergodic extended phase, we con-
sider the density imbalance

I ¼ Nodd − Neven

Nodd þ Neven
; ð8Þ

where Nodd (Neven) denotes the atom number on odd
(even) sites. The imbalance I can be measured using the
superlattice band-mapping technique [12]. The long-time
average of particle number at site j can be predicted
by a microcanonical ensemble analysis if the system
is ergodic [62], i.e., n̄j ¼ limT→∞ð1=TÞ

R
T
0 dtnjðtÞ ¼

hnjimicrocanðE0Þ, where E0 is the energy of the initial state.
The particle distribution of jΨðtÞi for large t is then
independent of the initial distribution, hence the final
distribution is uniform, giving I ¼ 0. In contrast, for the
nonthermal critical phase, I remains a finite value after a
long time evolution. Therefore, the MBC phase can be
distinguished from the other two through a combined
measurement of P and I.

FIG. 2. (a) W as a function of Mz and time t with initial half
width a ¼ 5 and lattice size L ¼ F13 ¼ 377. (b) W̄ versusMz for
different a with fixed size L ¼ 377. (c) Ground state momentum
distribution nðkÞ for different Mz with L ¼ F10 ¼ 89. (d) The
minimal index αmin versus Mz for L ¼ 89, 377 and
L ¼ F16 ¼ 1597. Here we take tso ¼ 0.3 and ϕ ¼ 0.

TABLE I. The observables W̄, κ, and αmin (L → ∞) in different
phases, where r (k) implies the corresponding quantity is
measured in real (momentum) space, and B(F) indicates it is
measurable in ultracold Bose (Fermi) atoms.

Phases Extended Critical Localized

κðrÞ (B, F) 1 ≈0.5 0
W̄ðrÞ (B, F) Maximum Middle plateau Minimum
αminðkÞ (B) 0 ∈ ð0; 1Þ 1
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Figure 3(a) shows the behavior of the return probabilityP,
whichquicklydecays to zerowhenMz ¼ 1or2.5, signifying
that the phases are extended. In contrast, P maintains a
nonvanishing value during the evolution atMz ¼ 4, indicat-
ing that the system enters the MBL phase. The long-time
average P̄ is displayed as a function ofMz in Fig. 3(b). One
can see that P̄ increases from zero to nonzero around the
pointMz ¼ 3 forL ¼ 10. However, forL ¼ 8, the transition
point moves to the regime Mz < 3. We attributes it to the
finite-size effect [63]. Hence we can conclude that when
L → ∞, the critical point of the delocalization-localization
transition is a bit larger than Mz ¼ 3. We then examine the
density imbalance I, as shown in Fig. 3(c). It demonstrates
that the system is ergodic when Mz ¼ 1, but nonergodic
whenMz ¼ 2.5 or 4. Combing Fig. 3(a), we find the system
to be in theMBC phase forMz ¼ 2.5. Figure 3(d) shows the
long-time average imbalance Ī, which is numerically calcu-
lated by using Ī ¼ ð2=TÞ R T

T=2 dtIðtÞ with T ¼ 100, and it
approximates the stable value of I after long time evolution.
We see that the ergodicity breaking transition occurs near
Mz ¼ 1.5, insensitive to system size. The combined mea-
surements show that the approximate region with Mz ∈
ð1.5; 3Þbelongs to the extendedandnonthermalMBCphase.
Proposal for experimental realization.—Finally we

propose a highly feasible experimental setup to realize
the Hamiltonian (1) based on optical Raman lattices
[35,40,47]. As depicted in Fig. 4(a), a standing-wave beam
E1 (red) with x polarization and a plane wave E3 (green)
with z polarization are applied to generate a spin-
independent main lattice V1ðzÞ and a Raman coupling

potential MðzÞ simultaneously. The former induces the
spin-conserved hopping and the latter produces the spin-
flip hopping [Fig. 4(b)]. In addition, another standing wave
E2 (blue), formed by two counter-propagating lights with
mutually perpendicular polarization, is used to produce a
spin-dependent lattice V2ðzÞ [40,64], which provides a
secondary incommensurate Zeeman potential.
With the bias field B applied along the z direction,

the standing wave E1 with x polarization can be written as
E1 ¼ êþE1þ cosðk1zÞ þ ê−E1− cosðk1zÞ with E1� being
the amplitudes. For alkali-metal atoms, the optical
lattice potential is spin independent, which reads V1ðzÞ ¼
Vp cos2ðk1zÞ with the depth Vp ∝ ðE2

1þ þ E2
1−Þ=Δ,

and creates a tight-binding primary lattice. Here Δ
denotes the coupling detuning. Having the plane-wave
field E3 ¼ êzE3eik3x, one Raman potential MðzÞ ¼
MR cosðk1zÞ, with MR ∝ E1−E3=Δ, can be generated by
E3 and the E1− component. The Raman and lattice
potentials satisfy a relative antisymmetry, which ensures
a spin-flipped hopping along the z direction [35,50]. The
other standing-wave field reads E2 ¼ êþE2þ cosðk2zÞ þ
ê−E2− sinðk2zÞ gives the secondary lattice V2ðzÞσz ¼
ðVs=2Þ cosð2k2zÞσz, with Vs ∝ ðE2

2þ − E2
2−Þ=Δ, which

provides a weak spin-dependent energy offset, with the
irrational number β ¼ k2=k1 [52]. The realization only
necessitates a weak incommensurate lattice, and the hop-
ping parameters are determined by the primary lattice and
Raman potentials [Fig. 4(b)]. The model parameters can be
tuned independently.
Here we take 40K fermions as an example, while the

realization is also applicable to bosons, such as 87Rb atoms.
For 40K, we choose j↑i ¼ jF ¼ 7=2; mF ¼ þ7=2i, and
j↓i ¼ j9=2;þ9=2i to construct the spin-1=2 system,
and set the wavelengths of E1;2 to be λ1 ¼ 768 nm and
λ2 ¼ 798 nm, which yields β ≈ 0.9624 if the two beams are
parallel. We then have Vs=Vp ∼ E2

2=162E
2
1 and MR=Vp ∼

E3=E1 [52]. One can tune the lattice and Raman potentials

FIG. 3. Time evolution of (a) the return probability with L ¼ 10
and (c) the density imbalance I with L ¼ 16 for Mz ¼ 1, 2.5, 4,
respectively. (b) P̄ obtained from Eq. (7) versusMz with L ¼ 8 or
10. The red dashed line denotes Mz ¼ 3. (d) Ī as a function of
Mz for different L. Red and black dashed lines correspond to
Mz ¼ 1.5 and Ī ¼ 0, respectively. Here we fix tso ¼ 0.3 and use
both the exact diagonalization method (for L ¼ 8, 10) and time-
density matrix renormalization group method (for L ¼ 12, 16).
To reduce the fluctuation, we take an average over 10 realizations
with different initial phase ϕ.

(a) (b)

FIG. 4. Experimental realization in cold atoms. (a) Experimen-
tal setup. A standing wave E1 with x polarization generates the
spin-independent primary lattice. Another beam E2, formed by
two counterpropagating lights with mutually perpendicular
polarization, gives a spin-dependent incommensurate lattice. A
plane waveE3 is applied to form a Raman coupling potential with
one component of E1. (b) Spin-conserved (t0) and -flipped (tso)
hoppings are induced by the primary lattice and Raman potential,
respectively. The secondary lattice provides an incommensurate
spin-dependent offset.
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freely by the laser intensity. For example, the settings
Vp ¼ 4.2Er and MR ¼ 0.4Er with Er ≡ ℏ2k21=2m give
tso ≃ 0.3t0; the noninteracting critical phase, which corre-
sponds to the parameter region 1.4t0 < jMzj < 2.6t0, can
be realized by tuning Vs in the range from 0.43Er to 0.80Er
[52]. The critical phase can be detected by monitoring
the atom cloud expansion and measuring the evolution of
the observable WðtÞ, which can be initiated by suddenly
switching off the external harmonic trap that initially
confines the atoms. With the above parameters the 40K
ultracold system has a relatively short lifetime ∼2500=Er,
which restricts the time of measurement of the expan-
sion dynamics. A clear detection of the critical phase
requires the initial atom cloud to have a small spatial half
width a (≤ 10) and thus have a relatively high expansion
speed, which may be achieved with a narrow and tight
trapping potential. This requirement is more relaxed for
87Rb bosons, whose lifetime is large ∼15000=Er. We put
the numerical details of this issue in the Supplemental
Material [52].
Conclusion.—We have proposed a highly feasible 1D

SO coupled model with incommensurate Zeeman potential
for realizing critical phases in a broad phase diagram region
separating from the extended and localized phases. In the
noninteracting regime, we showed that the critical phase
can be detected by measuring the mean square displace-
ment of the wave packet after a fixed time of expansion
evolution in real space or measuring the momentum
distributions. With interactions, we proposed two observ-
ables, i.e., the return probability of the initial state and
the density imbalance, to distinguish the MBC phase from
both the ergodic and MBL phases. With the study being
accessible in the current experiments, this Letter opens an
avenue with high experimental feasibility to explore critical
phases in ultracold atoms.
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