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We uncover a local order parameter for measurement-induced phase transitions: the average entropy of a
single reference qubit initially entangled with the system. Using this order parameter, we identify scalable
probes of measurement-induced criticality that are immediately applicable to advanced quantum
computing platforms. We test our proposal on a 1þ 1 dimensional stabilizer circuit model that can be
classically simulated in polynomial time. We introduce the concept of a “decoding light cone” to establish
the local and efficiently measurable nature of this probe. We also estimate bulk and surface critical
exponents for the transition. Developing scalable probes of measurement-induced criticality in more
general models may be a useful application of noisy intermediate scale quantum devices, as well as point to
more efficient realizations of fault-tolerant quantum computation.
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Introduction.—Equilibration to long-time states in many-
body systems arises due to entropy production between
subsystems and/or with an environment. In closed quantum
systems that thermalize, this entropy is in the form of long-
range entanglement between subsystems [1–4]. When a
quantum system is coupled to an environment, it is natural to
ask whether this entanglement between subsystems can
survive coupling to the bath. If so, this would imply, due to
monogamy of entanglement, that there are protected sub-
spaces of the system’s state space about which the environ-
ment does not gain information during the dynamics [5].
Such a scenario might seem implausible; however, in some
contexts it occurs quite naturally, e.g., in topologically
ordered systems [6,7] and any realization of a quantum
error correcting code [8–10]. These basic questions about
nonequilibrium quantum statistical mechanics, therefore,
have direct relevance to the more practical challenge of
realizing fault-tolerant quantum computation [11,12].
Recently, it was found that when local unitary entangling

dynamics is interspersed with measurements, there is a
phase transition between an area-law entangled state in the
system at high measurement rate and a volume-law
entangled state at low measurement rate [13–15]. In the
area-law phase, equilibration occurs predominantly through
entanglement with the local Markovian environment and
any long-range entanglement within the system is sup-
pressed, while in the volume-law phase some long-range
entanglement between subsystems is produced. There has
already been significant progress toward understanding
different aspects of this transition, including probes of
universal behavior in large classes of models [16], gener-
alizations to weak measurements [17], and alternative
viewpoints in terms of channel capacities, quantum error
correction [18,19], and purification dynamics [19]. In some

limiting cases, the phase transition can be studied analyti-
cally in a family of classical statistical mechanical models
derived via replica methods [20–22]. In these effective
models, entanglement is mapped to the free-energy cost
of inserting a domainwall in the system, raising the question
of whether there also local probes that can capture the
universal, critical properties of the transition. Furthermore,
the intrinsically random outcomes of quantum measure-
ments prevent one frompreparingmultiple copies of a single
state without either exponentially many samples or poten-
tially complex decoding operations. As a result, one might
suspect that this phase transition is fundamentally inacces-
sible in experiments with only polynomial resources.
In this Letter, we introduce local, scalable probes of such

measurement-induced criticality (MIC) that are immedi-
ately applicable to quantum computing platforms with
high-fidelity control on large numbers of qubits [23].
A central element of our proposal is the identification of
a local order parameter for these transitions equal to the
entropy of a finite number of maximally entangled refer-
ence qubits with the system. Using this order parameter,
one can extract universal features of the volume-law phase
in any spatial dimension and in systems with long-range
interactions using constant-depth quantum circuits and a
fixed number of runs of the experiment. Accessing the
critical region experimentally requires an efficient method
for computing “entropy decoder functions” that can corre-
late the basis of the reference qubits with the measurement
record using an incomplete model for the underlying
dynamics of the system.
Using a 1þ 1 dimensional stabilizer circuit model that

realizes one universality class for MIC [16] and can be
simulated classically in polynomial time [24,25], we show
how to identify the critical point with this local order
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parameter. We then establish the existence of a decoding
light cone defined by the spacetime location of measure-
ment events that purify the reference qubits. We directly
show that this local spreading of quantum information into
the measurements allows scalable probes of the two phases
in large systems. We then turn to an examination of critical
scaling properties of the order parameter. As is typical of
critical phenomena, the behavior of n-point functions in
finite-size systems depends sensitively on the underlying
topology [26,27]. We illustrate how to use this property to
extract a “surface” order parameter exponent βs. To
measure the “bulk” order parameter exponent β [28],
finite-size effects are reduced by measuring the two-point
function, which we identify with the mutual information
between two initially locally entangled reference qubits.
Order parameter measurement.—Combined unitary-

measurement dynamics in one of its simplest forms refers
to the open system dynamics described by the family of
quantum channels

N tðρÞ ¼
X

m⃗

Km⃗ρK
†
m⃗ ⊗ jm⃗ihm⃗j; ð1Þ

Km⃗ ¼ UtP
mt
t � � �U1P

m1

1 ; ð2Þ

where ρ is the density matrix of the system, Un are unitary
operators, Pmn

n is a sequences of projectors that satisfy
P0
n þ P1

n ¼ I, and m⃗ indexes the measurement outcomes
(mn ¼ 0 or 1). Such channels describe a system that is
coupled to the environment only through ancilla qubits,
which also act as a register to record the quantum
trajectories of the system [29]. We note that more general
definitions of measurement-induced transitions and phases
have been put forward in our recent work [19]. We consider

an equivalent formulation of the model shown in Fig. 1(a),
where the initial density matrix of the system S ρS ¼P

k λkjkihkj is purified by adding a reference system R:
jψRSi ¼

P
k

ffiffiffiffiffi
λk

p jkRijki. In each layer of the circuit, we
apply spatially local unitaries, followed by a round of
single-site measurements of each site with probability p.
For rather generic choices of unitaries, MIC arises in such
models by tuning the measurement rate p to a critical
value pc.
Previously, we showed that one could identify the phase

transition by studying the purification dynamics of the
maximally mixed state [19]; however, the entropy of this
mixed state has a similar interpretation to entanglement as a
domain wall free-energy cost [21] and does not serve as a
local or scalable probe. Here, we instead consider the case
where the reference system consists of a finite number of
qubits. For simplicity and ease of experimental implemen-
tation, we first focus on a single-reference qubit. We extend
the channel to a unitary operation by including an envi-
ronment N tðρSÞ ¼ TrE½USEρSEU

†
SE�. The total state of the

reference, system, and environment jψRSEi evolves as

jψRSEi ¼
X

km⃗

ffiffiffiffiffiffiffiffi
pkm⃗

p jkRijψkm⃗ijm⃗i; ð3Þ

where
ffiffiffiffiffiffiffiffi
pkm⃗

p jψkm⃗i ¼
ffiffiffiffiffi
λk

p ðKm⃗jkiÞjm⃗i and pkm⃗ is the joint
probability of starting in jki and observing measurements
m⃗. The reduced density matrix for the reference and
environment is ρRE ¼ P

m⃗ pm⃗ρRm⃗ ⊗ jm⃗ihm⃗j with

ρRm⃗ ¼
� p0jm⃗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip0jm⃗p1jm⃗
p Om⃗

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip0jm⃗p1jm⃗
p O�

m⃗ p1jm⃗

�
; ð4Þ

where pm⃗ ¼ P
k pkm⃗, pkjm⃗ ¼ pkm⃗=pm⃗ is the conditional

probability of the reference being in state jkRi, and Om⃗ ¼
hψ0m⃗jψ1m⃗i is an overlap factor. We introduce “quantum”
and “classical” order parameters based on this reduced
density matrix. We define the quantum order parameter as
the coherent quantum information of this input state [5],
which, for the channels in Eq. (1), reduces to the average
entropy of the reference qubit [18,19]

SQ ¼ SðρRÞ − IðR∶EÞ ¼
X

m⃗

pm⃗SðρRm⃗Þ; ð5Þ

where SðρÞ ¼ −Tr½ρ log ρ� is the von Neumann entropy
and IðR∶EÞ ¼ SðρRÞ þ SðρEÞ − SðρREÞ is the mutual infor-
mation between the reference and environment. SQ mea-
sures the ability of the system to store one bit of quantum
information [5,30]. In the ordered phase, the environment
gains little information about the state of the reference and
SQ can stay nonzero. In contrast, in the disordered phase,
the environment quickly learns about the state of the
reference and SQ decays to zero.
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FIG. 1. (a) Unitary-measurement dynamics in 1þ 1 dimensions
with additional reference probes. The reference qubits are used to
measure few-point order parameter correlations. (b) Finite-size
scaling of the entanglement transition in a stabilizer circuit model
using the circuit-averaged SQ as an order parameter (see text).
Each two-site unitary is drawn uniformly from the Clifford group,
and Z measurements are made at each site with probability p.
The crossing point for L ¼ 64–256 lets us locate pc ¼ 0.1598ð5Þ
and (inset) a collapse of the data at this value of pc occurs for
ν ¼ 1.30ð5Þ, consistent with previous estimates [16,19].
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To define the classical order parameter SC, we set the off-
diagonal elements of ρRm⃗ to zero

SC ¼ Hðpkm⃗Þ −Hðpm⃗Þ ¼
X

km⃗

pkm⃗ logðpm⃗=pkm⃗Þ; ð6Þ

where HðqiÞ ¼ −
P

i qi log qi is the classical entropy. SC
measures the ability of the environment to distinguish the
two initial states j0i and j1i. Analogous to SQ, it measures
the ability of the system to store one classical bit of
information [30]. We remark that a related metric to SC
is the Kullback-Leibler divergence of the measurement
distributions for two initial states j0i and j1i

DKLðp1m⃗jp0m⃗Þ ¼
X

m⃗

p1m⃗ logðp1m⃗=p0m⃗Þ; ð7Þ

which was identified as a probe of MIC in Ref. [21]. Near
the critical point, we expect all of these metrics to have the
same universal scaling behavior.
To demonstrate the utility of hSQi as a probe of the

transition, we turn to the 1þ 1 dimensional stabilizer
circuit model introduced in Ref. [16], where each two-site
unitary in Fig. 1(a) is given by a random Clifford gate and,
without loss of generality, each measurement is made along
the Z axis. Stabilizer circuits have the advantage that
efficient classical simulations are straightforward to imple-
ment for any dimension or interaction range [25], making
them suitable for scalable experiments that include the
critical region.
To identify the critical measurement rate, we initialize

systems of length L qubits with periodic boundary con-
ditions by first performing an “encoding” step that starts
from the reference maximally entangled with one site. We
then create a pseudorandom stabilizer state by running the
circuit without measurements for time t0 ¼ 2L, then
run the circuit with measurements for an additional time
t − t0 ¼ 2L. For p < pc, the entanglement of the system
with the reference qubit will be approximately preserved
during the dynamics, which leaves ρRm⃗ close to a max-
imally mixed state. On the other hand, for p > pc, the
measurements quickly collapse the entanglement, reducing
ρRm⃗ to a pure state with either jOm⃗j → 1 or one of
pkjm⃗ → 0. At the critical point, the reference qubit purifies
on a timescale ∼L [19].
In Fig. 1(b), we show the finite-size scaling of the circuit-

averaged hSQi through the entanglement transition. There
is an emergent conformal symmetry in the 1þ 1 dimen-
sional models [16,22], which fixes z ¼ 1. We use the
scaling ansatz

hSQi ¼ F½ðp − pcÞL1=ν; t=L�; ð8Þ

where t is the number of two-qubit gates that have acted on
each site. For this protocol, there is no early time power-law

decay because we are quenching the system from the
“ordered” phase. We locate the critical measurement rate
pc ¼ 0.1598ð5Þ through the crossing with increasing
system size for 64 ≤ L ≤ 256. Collapsing the data accord-
ing to Eq. (8) with this value of pc gives an estimate for the
correlation length exponent ν ¼ 1.30ð5Þ [31]. We find
excellent agreement of pc and ν with past results
[16,19]. To illustrate that this approach is applicable to
small-scale systems commonly studied in experiments, we
include data for 4 ≤ L ≤ 16. With this restricted dataset,
we obtain similar estimates ðpc; νÞ ¼ ½0.16ð1Þ; 1.3ð2Þ�with
less precision.
Decoding light cone.—This analysis shows that we

can obtain a direct probe of the phase transition and
critical point provided we can estimate an entropy decoder
function:

m⃗ → ðp0jm⃗; Om⃗Þ: ð9Þ

There are three basic approaches to finding this decoder in
experiment. One approach is to implement models such as
stabilizer circuits that allow efficient classical simulations.
The simulations allow one to make a good guess for the
appropriate basis to analyze each measurement result
for the reference qubit. Another approach is to use the
experimental data to correlate the measurement record with
simultaneous tomography measurements of the reference
qubit. This approach allows one to directly reconstruct the
decoding function but could require exponentially many
runs of the experiment near the critical point. A third
approach, which we do not explore here, is to use hybrid
methods that use the data output from the experiment as
input to a classical model for the decoder.
Although one might suspect that estimating such a

decoder is equivalent in difficulty to solving the quantum
dynamics of the circuit, this is not generally the case in
either of the two phases. In the volume-law phase, where
the overall complexity of the system is highest, the entropy
reduction of the reference qubit only takes place on
timescales ∼ξz, where ξ ∼ jp − pcj−ν is the correlation
length of the phase transition and z is the dynamical critical
exponent. After this point, the scrambling dynamics imply
that future measurements gain exponentially decreasing
amounts of information about the state of the reference.
Thus, we can accurately estimate the decoder in the
volume-law phase with a constant-depth quantum circuit.
A second crucial observation is that the decoder only
requires access to the measurement record over a bounded
spacetime domain within the causal light cone of the
reference qubit. We show an example of this emergent
decoding light cone in Fig. 2(a) for p < pc starting from
a product initial state with the reference entangled
with site x0 ¼ L=2. Here, hΔSQðx; tÞi is defined as the
average change in SQ due to a measurement at spacetime
location ðx; tÞ.
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Perhaps surprisingly, we find the same emergent light
cone away from the critical point for volume-law entangled
initial states as long as the reference qubit begins locally
entangled with the system [32]. In recent work, we
introduced a complementary definition of an information
spreading light cone in terms of the mutual information of
the reference qubit with the system and not the environment
[35]. These locality results further imply that if one
reference qubit remains in a mixed state, then an extensive
number of them separated by much more than the corre-
lation length will as well. To further confirm that only a
polynomial number of experimental runs are required, we
explicitly model the case where the measurement outcomes
are recorded only for jx − x0j below some cutoff length.
The results are shown in Fig. 2(b) for p ¼ 0.08 ≈ pc=2 and
p ¼ 0.24 ≈ 3pc=2. We find that hSQi converges close to its
ideal value as soon as the cutoff exceeds the correlation
length. This method explicitly fails at the critical point,
where the correlation length diverges; however, in 1þ 1
dimensions the entanglement only grows logarithmically in
time at pc [14], making decoders based on classical
simulation feasible.
Order parameter correlations.—Having established the

possibility of locating the transition with hSQi, we now turn
to the determination of the order parameter critical expo-
nents and correlation functions. To use our reference qubit
to estimate the surface order parameter exponent βs, we
apply a similar procedure as in Fig. 1(b) but with the initial
state chosen to be a product state and the reference qubit
entangled with one of the system’s qubits at this “disor-
dered” surface. With this protocol, the reference has a much
higher chance of purifying at early times compared to being
placed in the bulk. The numerical results vs p are shown in
Fig. 3(a), where we compute hSQi at time t ¼ 2L. Away
from the critical point, we see a collapse of the data with the
scaling hSQi ∼ jp − pcjβs for βs ¼ 0.45ð2Þ obtained from
fitting.

We can obtain an accurate probe of the bulk order
parameter exponent by measuring connected two-point
order parameter correlation functions using an additional
reference qubit. At time t0, we measure two qubits in the
system at positions x and y and then place each one of these
qubits in a maximally entangled state with a reference
qubit. We then compute the mutual information between
the two reference qubits Ixy as a function of ðt − t0Þ=L.
Scaling theory predicts that the circuit averaged hIxyi at
p ¼ pc should have the form [28]

hIxyi ¼ jx − yj−ηG½ðt − t0Þ=L� ð10Þ
for a universal scaling function Gð·Þ. In Fig. 2(b),(c), we
show that hIxyi follows precisely this predicted form in a
system with (b) periodic or (c) open boundary conditions.
In the 1þ 1 dimensional statistical mechanics model, we
are essentially measuring two-point functions in the surface
or bulk of a (b) cylinder or (c) strip. Using this method, we
obtain estimates for bulk [η ¼ 0.22ð1Þ] and surface
[ηk ¼ 0.7ð1Þ] order parameter exponents [32].
Conclusions.—We have defined a local order parameter

for MIC and shown how it can be used to realize scalable
probes of this novel class of critical phenomena. Our
proposals are immediately applicable to quantum computing
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FIG. 2. (a) Decoding light cone defined by hΔSQðx; tÞi, which
is the average change in SQ due to a measurement at spacetime
point ðx; tÞ. We took periodic boundary conditions with a product
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phase for the same condition as (a), but the measurement results
are only recorded when they occur a distance jx − x0j below the
indicated bounds.
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FIG. 3. (a) hSQi when the initial product state has one qubit
maximally entangled with the reference and is then run out to
time t ¼ 2L. This procedure allows us to compute the surface
order parameter exponent βs from the scaling hSQi ∼ jp − pcjβs .
(b) Surface/bulk two-point function obtained at p ¼ 0.1596 by
measuring the mutual information Ixy between two reference
qubits locally entangled with the system at time t0 ¼ 0=4L at two
antipodal sites ðx; yÞ ¼ ð0; L=2Þ with periodic boundary con-
ditions. (c) Two-point function for open boundary conditions
with t0 ¼ 4L and ðx; yÞ ¼ ð0; L − 1Þ or ð0; L=2Þ. We find
ðη; ηk1; ηk2; ηk3Þ ¼ ½0.22ð1Þ; 0.74ð1Þ; 0.67ð2Þ; 0.58ð2Þ�.
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platforms with high-fidelity control on large numbers of
qubits. Although we focused on a 1þ 1 dimensional stabi-
lizer circuit model, the proposedmethodology can be applied
to anyknown realizationofMIC in anynumber of dimensions
or range of interactions. In cases with long-range interactions,
entanglement within the system may no longer be a useful
diagnostic of the phase transition, but MIC is still realized in
the purification dynamics of the reference system [19].
Many open questions remain about the appropriate

classification of these phase transitions, especially outside
1þ 1 dimensions or in the presence of quenched disorder.
The ordered phase naturally realizes high complexity states,
which raises questions about the relation ofMIC to quantum
complexity theory.As a result, developing scalable probes of
MIC in more general models may be a useful application of
noisy intermediate scale quantum devices [36]. We have
found that our order parameter can be extracted from the
entropy of measurement outcomes in a fixed basis, which
can be directly estimated using techniques similar to cross-
entropy benchmarking [37]. Furthermore, the ordered phase
naturally realizes novel quantum error correcting codes
[18,19]. Studying the properties of these codes, including
their universal scaling properties near the transition, may
provide fundamental insights into quantum error correction,
potentially pointing to more efficient realizations of fault-
tolerant quantum computation.
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