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Generalized hydrodynamics is a recent theory that describes the large scale transport properties of one
dimensional integrable models. At the heart of this theory lies an exact quantum-classical correspondence,
which states that the flows of the conserved quantities are essentially quasiclassical even in the interacting
quantum many body models. We provide the algebraic background to this observation, by embedding the
current operators of the integrable spin chains into the canonical framework of Yang-Baxter integrability.
Our construction can be applied in a large variety of models including the XXZ spin chains, the Hubbard
model, and even in models lacking particle conservation such as the XYZ chain. Regarding the XXZ chain
we present a simplified proof of the recent exact results for the current mean values, and explain how their
quasiclassical nature emerges from the exact computations.

DOI: 10.1103/PhysRevLett.125.070602

Introduction.—The nonequilibrium dynamics of one
dimensional quantum integrable systems has attracted a
lot of interest [1]. Integrable models possess a large number
of commuting conserved charges, constraining their
dynamical processes and leading to dissipationless and
factorized scattering. This exotic dynamical behavior has a
number of experimentally measurable consequences, for
example a lack of thermalization [2,3]. Two central
theoretical problems have been the equilibration in isolated
integrable models, and the description of transport
in spatially inhomogeneous and/or driven systems.
Regarding equilibration it is now accepted that the emerg-
ing steady states can be described by the generalized
Gibbs ensemble [4,5]. Regarding transport the theory of
generalized hydrodynamics was introduced in [6,7], which
describes both the ballistic modes and also the diffusive
corrections [8–11]. Recent works [12–16] also treated the
phenomenon of superdiffusion.
In generalized hydrodynamics a central role is played by

the current operators describing the flow of conserved
quantities. The continuity relations for these flows com-
pletely determine the transport at the Euler scale [6,7]. It is
thus of utmost importance to understand the mean currents
in local or global equilibria. The works [6,7] argued that in
the thermodynamic limit the currents are given by a
formula of the type

J ¼
Z

dλρðλÞveffðλÞhðλÞ; ð1Þ

where λ is a rapidity parameter, hðλÞ is the one-particle
charge eigenvalue, ρðλÞ is the differential particle density
per volume and rapidity, and veffðλÞ is an “effective
velocity” that describes the propagation of single particle

wave packets in the presence of the other particles [17].
Clearly, this concept is quasiclassical, and it assumes the
dissipationless scattering of integrable models.
The formula (1) has received continued attention. It was

known that it holds in models equivalent to free bosons or
free fermions, where veffðλÞ ¼ e0ðλÞ=p0ðλÞ is the group
velocity [18]. In interacting cases proofs were given in
various settings [6,19–23]. The paper [24] derived a new
and exact finite volume formula for the mean currents in the
Heisenberg spin chains, and a connection to long range
deformed models was pointed out in [25]. However, the
microscopic proofs were not transparent enough and did
not fully explain why there exist such simple and exact
formulas for the currents. Furthermore, the direct algebraic
representation of the current operators was missing.
In this Letter we fill this gap. We make a direct

connection to the quantum inverse scattering method
(QISM) pioneered by Faddeev and the Leningrad school
[26,27]. This is the canonical framework to treat local
quantum integrable systems. For the first time we show that
the QISM also accommodates the current operators, lead-
ing to a simplified rigorous derivation of their mean values,
corroborating their quasiclassical nature.
Charges and currents.—We consider integrable spin

chains in finite volume, given by a local Hamiltonian Ĥ
acting on the Hilbert spaceH ¼⊗L

j¼1 Vj with Vj ≃ Cd. We
assume periodic boundary conditions.
Examples are the XXX, XXZ, and XYZ Heisenberg spin

chains [26,28], or the 1D Hubbard model [29]. These
integrable models possess a canonical set of local con-
served charges Q̂α that are in involution ½Q̂α; Q̂β� ¼ 0, such
that Ĥ belongs to the family. The charges can be written as
Q̂α ¼

P
x q̂αðxÞ, with q̂αðxÞ being the charge density

operators.
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The flow of these charges is described by the current
operators ĴαðxÞ, defined through the continuity relations

i½Ĥ; q̂αðxÞ� ¼ ĴαðxÞ − Ĵαðxþ 1Þ: ð2Þ

Following [24,30] we also introduce the generalized current
operators Ĵα;β that describe the flow of Q̂α under the time
evolution generated by Q̂β. They are defined through

i½Q̂β; q̂αðxÞ� ¼ Ĵα;βðxÞ − Ĵα;βðxþ 1Þ: ð3Þ

It is our goal to compute the exact mean values of Ĵα;β in the
eigenstates of the models, and to show that they always take
a form analogous to (1).
Transfer matrices.—The standard method to find the

commuting set of charges is the QISM [26,27]. Below we
summarize this procedure; for more details see [26], and for
a pictorial interpretation of the main algebraic objects see
Supplemental Material [31].
We start with the so-called R matrix Rðμ; νÞ ∈

EndðCd ⊗ CdÞ which satisfies the Yang-Baxter relation:

R12ðλ1; λ2ÞR13ðλ1; λ3ÞR23ðλ2; λ3Þ
¼ R23ðλ2; λ3ÞR13ðλ1; λ3ÞR12ðλ1; λ2Þ: ð4Þ

This is a relation for operators acting on the triple tensor
product V1 ⊗ V2 ⊗ V3 and we assume Vj ≃ Cd. It is
understood that each Rjk acts only on the corresponding
vector spaces. Examples for R matrices (describing the
above mentioned models) can be found in [26,28,29]. We
assume that the so-called regularity and inversion con-
ditions hold:

Rðλ; λÞ ¼ P;

R12ðλ1; λ2ÞR21ðλ2; λ1Þ ¼ 1: ð5Þ

Here, P is the permutation operator and R21ðu; vÞ ¼
PR12ðu; vÞP.
The charges are obtained from a commuting set of

transfer matrices. Let us take an auxiliary space Va ≃ Cd

and the Lax operators La;jðuÞ which act on Va and on a
local space Vj with j ¼ 1;…; L, where L is the length of
the chain. We require that the following exchange relation
holds:

Rb;aðν; μÞLb;jðνÞLa;jðμÞ ¼ La;jðμÞLb;jðνÞRb;aðν; μÞ; ð6Þ

with a, b referring to two different auxiliary spaces. It
follows from (4) that La;jðμÞ ¼ Ra;jðμ; ξ0Þ is a solution to
(6), where ξ0 is a fixed parameter of the model. In the
following, we use this choice and assume that ξ0 ¼ 0.
The monodromy matrix acting on Va ⊗ H is defined as

T̂aðμÞ ¼ La;LðμÞ;…;La;1ðμÞ: ð7Þ

The transfer matrix is its partial trace over the auxiliary
space: t̂ðμÞ ¼ TraT̂aðμÞ. The fundamental exchange rela-
tions (6) guarantee that ½t̂ðμÞ; t̂ðνÞ� ¼ 0. A generating
function for global charges is then defined as [26,27]

Q̂ðνÞ≡ ð−iÞt̂−1ðνÞ d
dν

t̂ðνÞ: ð8Þ

The traditional charges are the Taylor coefficients:

Q̂ðνÞ ¼
X∞
α¼2

να−2

ðα − 2Þ! Q̂α: ð9Þ

The Q̂α are extensive, and the density q̂αðxÞ spans α sites
[32]; in particular Ĥ ∼ Q̂2. The definition (8) makes sense
in any finite volume, but it gives the correct Q̂α only if
L > α. In the L → ∞ limit the operator Q̂ðμÞ is expected to
be quasilocal in some neighborhood of μ ¼ 0, for proofs in
concrete cases see [33–35].
Charge densities.—Writing Q̂ðμÞ ¼ P

L
x¼1 q̂ðμ; xÞ we

can identify the corresponding operator density as

q̂ðμ; xÞ≡ ð−iÞt̂−1ðμÞ
× Tra½T̂ ½L;xþ1�

a ðμÞ∂μLa;xðμÞT̂ ½x−1;1�
a ðμÞ�: ð10Þ

Here, we defined the partial monodromy matrices acting on
a segment ½x1;…; x2� as

T̂ ½x2;x1�
a ðμÞ ¼ La;x2ðμÞ;…;La;x1ðμÞ: ð11Þ

The definition (10) is homogeneous in space:
q̂ðμ; xÞ ¼ Û−1q̂ðμ; xþ 1ÞÛ, where Û is the cyclic shift
operator to the right.
Equation (10) is a new result of this work, which serves

as a starting point to obtain a similar formula for the
currents. It can be considered a matrix product operator
representation of the charge densities, with a local inho-
mogeneity at site x. For a pictorial representation, see
Supplemental Material [31].
Current operators.—We also construct a generating

function for the currents:

Ĵðμ; ν; xÞ ¼
X∞
α¼2

X∞
β¼2

μα−2

ðα − 2Þ!
νβ−2

ðβ − 2Þ! Ĵα;βðxÞ: ð12Þ

This two-parameter family of operators satisfies the gen-
eralized continuity relation

i½Q̂ðνÞ; q̂ðμ; xÞ� ¼ Ĵðμ; ν; xÞ − Ĵðμ; ν; xþ 1Þ: ð13Þ

The summation in (12) only makes sense in the L → ∞
limit, where we expect that Jðμ; ν; xÞ is a finite norm
operator localized around x, at least in some neighborhood
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of μ ¼ ν ¼ 0. Relation (13) is well defined in any finite
volume, if we use (8)–(10).
It is our goal to give an explicit construction for

Ĵðμ; ν; xÞ. We start with the commutator

½t̂ðνÞ; q̂ðμ; xÞ� ¼ ð−iÞt̂−1ðμÞ

×
d
dε

Trab½T̂bðνÞT̂ε
aðμÞ − T̂ε

aðμÞT̂bðνÞ�jε¼0;

ð14Þ

where now a and b refer to two different auxiliary spaces,
and T̂ε

aðμÞ is a deformed monodromy matrix defined as

T̂ε
aðμÞ ¼ T̂ ½L;xþ1�

a ðμÞLa;xðμþ εÞT̂ ½x−1;1�
a ðμÞ: ð15Þ

The modification of the rapidity parameter at site x is the
reason for the noncommutativity, and this will result in the
appearance of the current operators.
At ε ¼ 0 the intertwining of the monodromy matrices is

performed by a repeated application of (6). In T̂εðμÞ the
difference is that there is one Lax operator with a modified
rapidity. At that particular site the exchange is also given by
(6), but it involves Rb;aðν; μþ εÞ. Inserting these commu-
tation relations into (14) and performing the ε derivative we
eventually obtain

t̂−1ðνÞ½t̂ðνÞ; q̂ðμ; xÞ� ¼ Ω̂ðμ; ν; xÞ − Ω̂ðμ; ν; x − 1Þ; ð16Þ

where we introduced a new “double row” operator

Ω̂ðμ; ν; xÞ ¼ t̂−1ðνÞt̂−1ðμÞTrab½T̂ ½L;xþ1�
a ðμÞ

×T̂ ½L;xþ1�
b ðνÞΘa;bðμ; νÞT̂ ½x;1�

a ðμÞT̂ ½x;1�
b ðνÞ�: ð17Þ

Here,

Θa;bðμ; νÞ ¼ ð−iÞRb;aðν; μÞ∂μRa;bðμ; νÞ ð18Þ

is an operator insertion acting only on the auxiliary spaces,
coupling the two monodromy matrices. A pictorial repre-
sentation of Ω̂ðμ; ν; xÞ is given in Supplemental
Material [31].
Taking a further ν derivative on the lhs of (16) we

recognize the continuity equation (13) and identify

Ĵðμ; ν; xÞ ¼ −t̂ðνÞ∂νΩ̂ðμ; ν; x − 1Þt̂−1ðνÞ: ð19Þ

Let jΨi be an arbitrary eigenstate of the commuting transfer
matrices. For the mean values we get

hΨjĴðμ; ν; xÞjΨi ¼ −∂νhΨjΩ̂ðμ; ν; x − 1ÞjΨi: ð20Þ

This connects the ν derivatives of Ω̂ðμ; ν; xÞ to the current
mean values. To complete the picture, we also compute the
initial value at ν ¼ 0. Direct substitution and the regularity

condition lead to Ω̂ðμ; 0; xÞ ¼ q̂ðμ; xÞ. Thus, Ω̂ not only
describes all (generalized) currents, but also all charge
densities. Together with (20) this is the first central result of
our work.
Symmetry.—We discuss the symmetry of Ω̂ðμ; ν; xÞ

under the exchange of its rapidity variables. The partial
monodromy matrices in the definition (17) can be
exchanged using (6). Direct computation shows that
Ω̂ðμ; ν; xÞ ¼ Ω̂ðν; μ; xÞ iff

∂μRb;aðν; μÞ þ ∂νRb;aðν; μÞ ¼ 0: ð21Þ

This is satisfied if the R matrix is of difference form:
Rb;aðν; μÞ ¼ Rb;aðν − μÞ. Examples are the various
Heisenberg spin chains, and a famous counterexample is
the Hubbard model. This exchange symmetry results in
equalities between different charge and current operators,
as already observed in [24].
Inhomogeneous cases.—The nature of the operator Ω̂ is

better understood if we also consider the inhomogeneous
spin chains. Let us take generic complex numbers ξL and
define the inhomogeneous monodromy matrix

T̂aðμÞ ¼ Ra;Lðμ; ξLÞ;…; Ra;1ðμ; ξ1Þ; ð22Þ

In this case we can still define the Ω̂ operator with
formula (17), replacing each local Lax operator with their
inhomogeneous versions, and keeping the insertion
Θa;bðμ; νÞ the same.
Even though Ω̂ is quite complicated, there is a remark-

able simplification when the parameters μ, ν are chosen
from the set ξL. Let us take for simplicity μ ¼ ξ1, ν ¼ ξ2,
and set x ¼ 2. A straightforward computation leads to

Ω̂ðξ1; ξ2; 2Þ ¼ Θ1;2ðξ1; ξ2Þ: ð23Þ

This means that for these special values Ω̂ðμ; ν; xÞ becomes
an ultralocal operator acting only on the first two sites. This
bridges a connection to the theory of factorized correlation
functions in the XXZ chain [36–41], where the mean value
of Θ1;2ðξ2; ξ1Þ is one of the basic building blocks. Our
contribution here is the construction of Ω̂ðμ; ν; xÞ for
general μ, ν, and the explanation that it describes the
currents and the charges. The result (23) is also analogous
to the “solution of the inverse problem” [42,43], where the
monodromy matrix elements can be specialized such that
they become ultralocal operators acting on single sites only.
Mean values.—We return to the homogeneous case and

employ a trick originally developed in [39]. We relate the
mean values of Ω̂ðμ; ν; xÞ to a transfer matrix eigenvalue in
an auxiliary problem. Consider an enlarged spin chain with
two extra sites. Choose a rapidity μ and a deformation
parameter ε. The enlarged monodromy matrix acts on
Va ⊗ VLþ2 ⊗ VLþ1 ⊗ H and is given by
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T̂þ
a ðuÞ ¼ LLþ2ðuÞLLþ1ðuÞTaðuÞ; ð24Þ

where TaðuÞ is given by (7), and the two extra
Lax operators are LLþ2ðuÞ ¼ Ra;Lþ2ðu; μþ εÞ and
LLþ1ðuÞ ¼ RtLþ1

Lþ1;aðμ; uÞ, where tLþ1 denotes partial trans-
position with respect to the physical space at site
x ¼ Lþ 1. The Yang-Baxter relation implies that both
Lax operators satisfy the exchange relation (6). For
LLþ2ðuÞ this follows directly from (6); here μþ ε plays
the role of an inhomogeneity parameter. For LLþ1ðuÞ it can
be proven by taking partial transpose of (6) with respect to
the physical space and exchanging the labeling of the
rapidities. Putting everything together we can see the
transfer matrices defined as t̂þðuÞ ¼ TraTþ

a ðuÞ form a
commuting set.
At ε ¼ 0 the extra two sites become decoupled: If jΨi is

an eigenstate of the original t̂ðuÞ with eigenvalue ΛðuÞ,
then

t̂þðuÞðjδi ⊗ jΨiÞ ¼ ΛðuÞðjδi ⊗ jΨiÞ: ð25Þ

Here, jδi is the “delta state” given by components δij in the
computational basis.
After switching on a nonzero ε the first two sites will

affect the eigenvalues and the eigenvectors. Let Λþðujμ; εÞ
be the eigenvalue of t̂þðuÞ on a state jΨþiwhich in the limit
ε → 0 becomes jδi ⊗ jΨi. A standard first order perturba-
tion theory computation gives [31]

hΨjΩ̂ðμ; ν; xÞjΨi ¼ i
d
dε

logΛþðνjμ; εÞj
ε¼0

: ð26Þ

This is the second central result of our work, which applies
essentially to “all” Yang-Baxter integrable local chains.
The eigenvalues Λþðνjμ; εÞ can always be found by
standard methods of integrability, and this explains why
there exist simple exact formulas for the current mean
values. The specifics of the model come into play only
when we are actually solving the auxiliary problem.
Heisenberg spin chain.—As an example we take the

easy-axis XXZ chain defined by the Hamiltonian density

ĥðjÞ ¼ σ̂xj σ̂
x
jþ1 þ σ̂yj σ̂

y
jþ1 þ Δðσ̂zjσ̂zjþ1 − 1Þ: ð27Þ

Here, σ̂x;y;zj are Pauli matrices acting on site j and Δ ¼
coshðηÞ > 1 is the anisotropy parameter. The associated R
matrix is of the form

Rðμ; νÞ ¼

0
BBBBB@

1 0 0 0

0 bðμ − νÞ cðμ − νÞ 0

0 cðμ − νÞ bðμ − νÞ 0

0 0 0 1

1
CCCCCA
; ð28Þ

with bðuÞ ¼ sinðuÞ= sinðuþ iηÞ, cðuÞ ¼ sinðiηÞ=
sinðuþ iηÞ.
The model can be solved by the algebraic Bethe ansatz

method [26]. Eigenstates are labeled by a set of rapidities
λN , describing N interacting spin waves, satisfying the
Bethe equations

pðλkÞLþ
XN
j≠k

δðλk − λjÞ ¼ 2πZk; Zk ∈ Z; ð29Þ

where L is the length of the chain, and

eipðλÞ ¼ sinðλ − iη=2Þ
sinðλþ iη=2Þ ; eiδðλÞ ¼ sinðλþ iηÞ

sinðλ − iηÞ : ð30Þ

For the generating function of the conserved charges we
find the eigenvalues Q̂ðνÞjλNi ¼ QðνÞjλNi where QðνÞ ≃P

N
j¼1 hðλj − νÞ and hðuÞ ¼ p0ðuÞ. Here, and in the follow-

ing the ≃ sign means that there are correction terms
behaving as OðνLÞ or OðμLÞ for small μ, ν.
The auxiliary spin chain problem defined by (24) can

also be solved using the algebraic Bethe ansatz method.
Here, we present the outline of the computation; for the
details we refer to Supplemental Material [31]. It turns out
that the main effect of the extra two sites is that they act as a
momentum dependent twist operator for the particles of the
original chain. This deforms the Bethe equations and their
solutions. We get

−εhðλk − μÞ þ pðλkÞLþ
XN
j≠k

δðλk − λjÞ ≃ 2πZk; ð31Þ

where μ is the external parameter introduced in (24).
Furthermore, we have ∂ν logΛþðνjμ; εÞ ≃ iQðνÞ, where
QðνÞ is the same function introduced above, but evaluated
at the ε-deformed rapidities Supplemental Material [31].
Equations (19) and (26) then lead to

hλN jĴðμ; ν; xÞjλNi ≃
XN
j¼1

h0ðλj − νÞ dλj
dε

: ð32Þ

As a useful trick let us regard the solution λN of (29) as
functions of the Zk, and let us relax the condition that the Zk
are integers. Then the ε derivatives can be expressed as

dλj
dε

≃
XN
k¼1

∂λj
∂ð2πZkÞ

hðλk − μÞ: ð33Þ

Here, it is understood that for the physical states the
formula is evaluated at integer Zk. Then the result (32)
is written as
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hλN jĴðμ; ν; xÞjλNi ≃
XN
k¼1

∂QðνÞ
∂ð2πZkÞ

hðλk − μÞ: ð34Þ

Expanding to low orders in μ and ν we get the final result

hλN jĴα;βðxÞjλNi ¼
XN
k¼1

∂Qβ

∂ð2πZkÞ
hαðλkÞ: ð35Þ

Even though the intermediate formulas were only approxi-
mate, the final result (35) is exact, and agrees with [24,25];
the exact formula for hλN jΩ̂ðμ; ν; xÞjλNi is presented in
Supplemental Material [31].
Interpretation.—Consider the semiclassical picture of N

particles moving on the circle of circumference L, subject
to two-particle scattering events described by the phase
shift δðλÞ defined above. In this situation ð2πZkÞ=L can be
interpreted as the “dressed momentum” of the particles,
which takes into account the interaction between the
particles. Then the formula (35) is interpreted as

hλN jĴα;βðxÞjλNi ¼
1

L

XN
k¼1

veff;βðλkÞhαðλkÞ; ð36Þ

with veff;βðλkÞ ¼ L∂Qβ=∂ð2πZkÞ being the natural gener-
alization of the group velocity under time evolution dictated
by Q̂β. For more details see [24,25].
Thermodynamic limit.—It is possible to take the thermo-

dynamic limit of (35) with a direct approach, reproducing
the results of [6,7]. Alternatively, we can apply the quantum
transfer matrix approach [39,41] directly in the thermody-
namic limit. These computations will be presented
elsewhere.
Discussion.—We constructed a generating function for

the charge densities and the current operators using
standard tools of Yang-Baxter integrability. The main
formulas are model independent.
Our construction explains why there exist simple for-

mulas for the current mean values: because they are tied to
certain transfer matrix eigenvalues through (20) and (26). In
integrable models such eigenvalues are always “easy” to
compute, in contrast with generic correlation functions,
which are much more difficult to handle. This means that
the current operators are the “next simplest” operators after
the charge densities.
We demonstrated on the example of the XXZ chain that

the current mean values have a quasiclassical interpretation.
Our derivations suggest that this is a generic feature of
integrable spin chains. The ultimate physical reason for this
behavior is the dissipationless and factorized scattering in
integrable models, and our work provided new algebraic
tools to treat this phenomenon. We stress that our compu-
tations are completely rigorous. The approximations above
were only introduced to provide a more intuitive under-
standing. Thus, we made an important step toward proving

the emergence of hydrodynamics in a quantum many body
situation.
In future work we plan to compute the currents in models

not yet considered in the literature. A particularly interest-
ing case is the XYZ model, which belongs to the class of
models treated here, but lacks particle conservation on the
microscopic level. Furthermore, it would be interesting to
consider current operators also in the separation of vari-
ables approach [44–47].
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