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Significance and Sensor Utility of Phase in Quantum Localization Transition
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The degree of localization of the Harper-Hofstadter model is shown to display striking periodic
dependence on phase degrees of freedom, which can depend on the nature of the boundary condition,
reminiscent of the Aharonov-Bohm effect. In the context of implementation in a finite ring-shaped lattice
structure, this phase dependence can be utilized as a fundamentally different principle for precision sensing
of rotation and magnetic fields based on localization rather than on interferometry.
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Phase is a defining feature of quantum mechanics, yet
some of its most profound effects were initially overlooked,
notably the Aharonov-Bohm effect [1], the physical
relevance of the geometric phase [2], and the Josephson
effect [3]. Here we reexamine the much-studied Harper-
Hofstadter [4,5] model to find that its inherent phase
degrees of freedom can have a striking observable influence
on its characteristic localization transition, and we discuss
how those effects could be harnessed as a new principle for
precision sensing of rotation and magnetic fields. We
present evidence based on simulations using multiple
approaches and provide arguments for the origins of these
effects, while identifying the circumstances under which
they gain physical relevance.

The Harper equation is deceptively simple to represent,

Jilwnir ¥ + Jacos(2ran + O)y, = Ey,, (1)

yet encompasses a wealth of mathematical features and
physical significance. Since 1955, when Harper used it to
describe electrons in a 2D periodic lattice subject to a
magnetic field [4], this equation has been the subject of
countless studies, many highly consequential [5-7], aug-
mented in recent years by the equation’s relevance for
synthetic gauge structures in ultracold atoms [8-11].
Certain trends, however, have persisted that will be
reexamined here, specifically, the phase ¢ has been pri-
marily relevant as relic of the extra translational degree of
freedom of the 2D model [12,13], the periodicity associated
with rational «a is seldom interpreted in terms of a physical
1D ring, and the overarching interest has been driven by
fundamental physics rather than applications.

Discrete model.—The Hamiltonian in Eq. (1) lacks
periodicity for irrational a, but for rational values a =
p/qwith p, g, € [1,2, ...) and where p and g are coprimes,
it has period ¢ and can be realized in a ring-shaped lattice
with ¢ sites. This same periodicity is also reflected in the
phase 6. We take p, g as successive Fibonacci numbers
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since the infinite limit & — (/5 — 1)/2 is the inverse of the
golden ratio, an assured irrational number. Figure 1(a)
shows a schematic for @ =5/8. For a quantum state
¥(n) = ¢, on the lattice defined by its amplitudes at the
sites n, the degree of localization is quantified by the
inverse participation ratio (IPR) [14]:

PR = Yl (Zws) )

When the medium is localized on a single site /PR =1,
whereas if it is uniformly spread over all sites /PR — 1/g
for a lattice with ¢ sites, vanishing in the limit of an infinite
lattice. Figure 1(b) shows a surface plot of the IPR for the
ground state as a function of the modulation phase ¢ and
the ratio y = J,/J;. A top view of the same is shown in
Fig. 1(d). A localization transition, as predicted by Aubry
and André [7,15], is clearly visible, particularly in the top
view. Since the ring is finite, the transition occurs gradually
across the critical value of y = 2, becoming sharper with
increasing lattice sites.

The most striking feature evident in the figures is the
dependence on the modulation phase € in the regime y > 2
where, although the medium is generally localized, the IPR
periodically decreases sharply, indicating partial delocal-
ization around specific values of the phase. These regimes
of partial delocalization grow progressively narrower
farther away from the critical point, as illustrated in a
contour plot, Fig. 1(c), centered at one of the dips. An
intuitive explanation is found in the limit y > 1, dominated
by the cosine term, which typically has a global minimum
at a single site where states localize, but at the dips the
minimum is shared by two sites [16].

In the infinite limit, a discrete Fourier transform
Yn = m e gives an equation dual to Eq. (1):

J2 [(perl e—iG +(pm—1 ei@] +4J1 cos(27ram)(pm = 2E(pm (3)
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(b) Harper

FIG. 1.

(f) Dual

Counterclockwise from top center, with € in units of 2 in all figures. (a) Schematic of a discrete ring-shaped lattice with eight

sites shown as gray circles at the bottom. Cosine modulation at a different period (five full oscillations around, shown in red) shifts the
energies at the sites, with the resulting lattice shown above as blue circles (the lines are for visual guidance). (b) The ground state IPR
transitions around y = J,/J; = 2 from unity, indicating localization of the medium, to a low value, indicating an extended state. But, in
the localized regime, there is partial delocalization near certain values of the phase, €, that manifests as narrow dips. (d) The top view of
the same. (f) The dual Hamiltonian shows the opposite trend, the ground state IPR transitions from a value of unity for y < 2 to a low
value for y > 2, and now there is partial localization near the same values of the phase, marked by narrow ridges in the plot. (c),(e) Top
view contour plots corresponding to sections of (b) and (f), respectively, for extended values of y showing progressive narrowing of the

delocalization dips and localization ridges.

We compute the IPR for this dual Hamiltonian also on a
finite ring. Figure 1(f) shows a surface plot of the ground
state IPR for ¢ = 5/8 as a function of y and the phase € in
the exponent. As with the Harper equation, the localization
transition is evident, but the regimes are switched, con-
sistent with predictions in the infinite limit. In the
delocalized regime, sharp ridges of partial localization
are conspicuous, complementary to the dips seen with
Eq. (1) but similarly narrowing as y increases, highlighted
by a contour plot, Fig. 1(e), centered on a ridge.

Features.—Although we use the Fibonacci ratio, the
partial (de)localization effects occur for any ratio p/q,
but the sharpness of the ridges and dips vary. The regions
of dips or ridges match the number of lattice sites,
serving to visualize the magnetic period [17] that manifests
as symmetry under lattice translations [12]. When the
site number approaches infinity, @ — (v/5 —1)/2, those
regions approach a zero measure as more periods squeeze
into the span of [0, 27), consistent with theorems asserting
all states are localized for y > 2 for the Harper equation and
vice versa for its dual [18,19]. The average IPR, taken over
all states in the ground band, displays similar features; the
case of @ = 3/5 is shown in Fig. 2(a). Additional periodic
structure beyond the magnetic period arises from the
excited states, evident in the cross sections of their IPR
at fixed y plotted in Fig. 2(b).

The significance of the ring structure becomes evident by
contrasting it with a box boundary condition. For the

Harper equation, Eq. (1), the localization dips remain,
but the regular pattern can be distorted, as seen in Fig. 2(c).
However, for the dual equation, Eq. (3), the localization
ridges completely vanish for the box boundary condition.
Physically, this makes sense because the phase in the
Harper equation is a relative phase of the modulation with
respect to the underlying lattice; whereas the phase in the
dual equation appears as an absolute phase, so only when
we impose the periodic boundary condition, the single
valuedness of quantum states makes that phase physically
relevant, a situation analogous to that for the Berry phase
[2] and the Aharonov-Bohm effect [1].

A qualitative explanation can be found in Thouless’s
relation [20] between localization and the spectrum, uti-
lized by Aubry and André [7] to posit the existence of the
localization transition at y = 2. For a box boundary
condition, properties of tridiagonal matrices [16,21] show
that the characteristic equation for the Hamiltonian in
Eq. (1) depends on the phase but is independent of it
for the dual Hamiltonian in Eq. (3). But, in a ring lattice,
phase dependence occurs for both cases. Indeed, in a ring,
we find that the Thouless exponent for the degree of
localization 4; = (¢ —1)™' 37, In|E; — E;| plotted for the
Harper ground state j = 0 in Fig. 2(d) follows the same
pattern as with the IPR. However, because the Thouless
expression strictly applies to an open 1D lattice, this is only
a qualitative argument to suggest that the phase dependence
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FIG. 2. Features illustrated with the discrete model for a ring lattice with ¢ = 5 sites and @ = 3/5, all for the Harper equation Eq. (1)
except where mentioned. (a) The IPR averaged over all states in the lowest band displays the localization transition and dependence on
the phase 6 as for the ground state in Fig. 1. (b) The dependence of the IPR on the phase 8 at fixed y = 5 is shown for each state in the
lowest band, labeled by eigenenergies E; in ascending value. (c) With a box boundary condition, the phase dependence of the IPR,
shown for the ground state, persists for the Harper equation although distorted, but for the dual case Eq. (3) that dependence vanishes
altogether. (d) Thouless exponent A, for the lowest band, referenced to the ground state, displays the same phase dependence as the IPR.
(e) The ground state IPR reveals an asymmetry with respect to the sign of y. (f) This asymmetry is conspicuous when J; and J, are varied

for fixed € = 0.

of the IPR arises from the spectral properties of the

respective Hamiltonians.

Comparing Fig. 2(e) for « = 3/5 with Fig. 1(d), where
a =5/8, reveals an asymmetry under parity of y for odd
q because for J; fixed, J, - —J, in Eq. (1) amounts
to cos[2z(np/q) + 0] — cos]2z(np + q/2)/q + 0]. The
asymmetry highlights the IPR dips. The IPR plotted in
Fig. 2(f) versus J; and J, for @ = 0 reaches complete
localization for J, < O but only partial localization for
J, > 0. Changing both J; and J, reverses the order of the
eigenvalues, so the ground state IPR is for the previously
highest energy state in the band.

Continuum model.—Consider now a physical lattice
implemented with a bichromatic potential [Fig. 3(a)]:

flz d2 2 X 2rax
5 -+ S < > + YA COS < a + 6) ( )

The second term creates the lattice structure of Eq. (1) and
the last term, the Harper modulation. The hopping strength
is estimated as A = |(w,|Hy|w,. )| using Wannier states
w,, localized at adjacent sites. H, neglects the relatively
smaller Harper term, while y as defined has the same role as
its discrete counterpart [22]. Figure 3(b) confirms that the
IPR computed for this Hamiltonian has the same features as

the discrete model, including the localization transition and
the sharp #-periodic dips.

In the continuum counterpart of the dual Hamiltonian
Eq. (3), the effect of the phase in the coupling appears as a
minimally coupled gauge potential, Q [16]:

1 2
% [— (—ihi - Q) + Vsin? <”—x>} + 4A cos <27zax> )
2m dx a a
(5)

The Q? term has no impact on the IPR, so the kinetic term in
Eq. (5 can be reduced to y[—(hA%/2m)(d*/dx*)+
i(h/m)Q(d/dx)] and Q interpreted as the angular velocity
for unit ring radius r [22]. We assume A=m =e =r = 1.
The ground state IPR for this Hamiltonian in Fig. 3(c)
displays localization transition and localization ridges, now
as function of Q. The y parity effect is more pronounced here
because the computed spectrum includes multiple bands,
and as all eigenvalues reorder, the “ground state” IPR for
+|y| and —|y| corresponds to states from different bands.

Sensing by localization.—The strong phase dependence
displayed by the IPR offers a novel alternate principle for
sensors based on localization transition. Since the results
rely only upon assuming a ring system, a dual periodic
potential, and wavelike behavior, the principle can find
broad applications. Here, we mention a few.
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(a) Schematic of the continuum model with two sinusoidal potentials of commensurate periodicities, p = 3 and ¢ = 5, in a

ring with @ = 3/5. (b) The IPR computed with Hamiltonian Eq. (4) displays behavior analogous to its discrete counterpart [Fig. 2(e)]
with matching narrow dips. (c) The continuum dual Hamiltonian, Eq. (5), also reproduces the behavior of its discrete counterpart, with
localization ridges now as function of gauge potential Q (units of 2z/a), occurring in the extended regime y > 2. (d) The Fisher
information plotted for the discrete Harper equation, Eq. (1), displays high sensitivity to the phase 0 at the location of the dips in the IPR.
(e) Sensitivity to Q also spikes at the position of the partial localization ridges for the continuum dual Hamiltonian, Eq. (5), but the log

scale reveals more structure.

The continuum ring Hamiltonian in Eq. (5) can be
implemented with ultracold atoms in a ring-shaped lattice
[23] with two overlapping commensurate periodicities,
building on current capabilities with ring traps. The system
can be calibrated to match Q = 0 with a localization ridge
such that a slight rotation will induce a significant change in
the degree of localization of the medium. Calibration to an
offset from a maximum will allow determination of
directionality. Alternately, the component lattices can be
linked to two independent systems; then the change in the
phase 6 in Eq. (4) can measure relative rotation or torsion
via the localization dips.

In a separate application, with Q interpreted as the vector
potential, this same principle can be used for precision
sensing of magnetic fields using a charged medium in a ring
formed, for instance, with coupled quantum wells with
cosine modulation of their on-site energies [24].

We quantify the sensitivity of such sensor applications
with the Fisher information (FI) for the probability dis-
tribution function P(x;¢) along the ring as follows:

FI = / dxP(x;$)[0yIn P(x; )2, (6)

with observable ¢ = Q for the continuum, and ¢ = 0 and
the integral replaced by a sum over sites for a discrete

lattice. In Fig. 3(d), the FI for the ground state distribution
for the discrete Harper equation, Eq. (1), displays
heightened sensitivity to € along the IPR dips, rising with
y. Likewise, sensitivity to € spikes in Fig. 3(e) along the
ridges for the ground state IPR for the continuum dual
Hamiltonian, Eq. (5), with more detailed structure revealed
by the semilog plot. Both demonstrate that high sensitivity
can be achieved, benchmarked for instance by FI ~ 4z2, for
Sagnac interferometry on a ring [25].

Effect of interactions.—Ultracold atoms in lattices
typically have interparticle interactions. We assessed
their effects by considering a Bose-Hubbard Hamiltonian
[26,27] adapted to the Harper equation, Eq. (1), and
its dual Eq. (3) [16]. We examined both cases with
different numbers of lattice sites g and particles N,
computing the many-body ground state wave function
®, and the associated single particle density matrix
pi; = (®g|a]a;|®y). We evaluated the IPR in two separate
ways: (i) by inserting the components of @, in Eq. (2) and
(ii) by substituting |¢,|> = p,,, the diagonal elements of
the single particle density matrix. Without interactions,
U = 0, the IPRs demonstrate all the features described
above, including the localization transition and the dips
and ridges [examples for the dual case are shown in
Fig. 4(a),(b)]. The phase dependent dips and ridges were
present regardless of whether or not N and ¢ were mutually
commensurate.
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FIG. 4. The Bose-Hubbard model [16] is used to simulate
effects of interparticle interactions in the dual case, shown here
for N =7 particles in ¢ =5 sites for a = 3/5. The left panels
compute the IPR with the ground state and the right panels utilize
the single particle density matrix. (a),(b) The IPR computed with
no interaction, U = 0. (c),(d) The IPR computed with interaction
U = 1. (e),(f) The line plots display how the sharpness of a partial
localization ridge varies with the interaction strength U at fixed
y=4.

Interactions make the ridges less prominent, as seen in
Fig. 4(c),(d). However, the decline is not monotonic, as
seen in Fig. 4(e),(f), which plots the IPR around one of the
localization ridges for fixed y. The many-body ground state
IPR shows sharpening of the ridge with increasing U before
broadening out, suggesting rich nonlinear effects we
continue to study.

Outlook.—Several lines of further investigation are
indicated, spanning basic research that includes rigorous
analysis of localization in finite rings, effects of time
evolution and interactions, and applied research on exper-
imental implementation [28,29] and in metrology.
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