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Shape, dynamics, and viscoelastic properties of eukaryotic cells are primarily governed by a thin,
reversibly cross-linked actomyosin cortex located directly beneath the plasma membrane. We obtain time-
dependent rheological responses of fibroblasts and MDCK II cells from deformation-relaxation curves
using an atomic force microscope to access the dependence of cortex fluidity on prestress. We introduce a
viscoelastic model that treats the cell as a composite shell and assumes that relaxation of the cortex follows
a power law giving access to cortical prestress, area-compressibility modulus, and the power law exponent
(fluidity). Cortex fluidity is modulated by interfering with myosin activity. We find that the power law
exponent of the cell cortex decreases with increasing intrinsic prestress and area-compressibility modulus,
in accordance with previous finding for isolated actin networks subject to external stress. Extrapolation to
zero tension returns the theoretically predicted power law exponent for transiently cross-linked polymer
networks. In contrast to the widely used Hertzian mechanics, our model provides viscoelastic parameters
independent of indenter geometry and compression velocity.
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Many cellular processes such as adhesion, motility,
growth, and development are tightly associated with the
mechanical properties of cells and their environment [1–3].
Vitality and fate of cells are often directly inferred from
their elastic properties [4–6]. In search for effective and
standardized mechanical phenotyping of living cells, seve-
ral tools have been developed that permit precise and fast
measurements [7]. The response of cells to external
deformation is primarily attributed to the viscoelasticity
of the cellular cortex [5,8–10]. The cortex forms a
composite shell consisting of a compliant but contractile
actin mesh with a large number of actin-binding proteins
coupled to the plasma membrane [11,12]. The thin actin
cortex can be contracted by the action of motor proteins
such as myosin II, resulting in a measurable prestress that
provides resistance against deformation at low strain
[10,13]. It was found that rheological parameters of
compliant cells such as the complex shear modulus gene-
rally obey a power law dependency G� ∝ ωβ over multiple
decades in frequency ω [14,15]. The dimensionless power
law coefficient β characterizes the degree of fluidity and
energy dissipation upon deformation, where β ¼ 0 repre-
sents an ideal elastic solid and β ¼ 1 a Newtonian liquid.
Values obtained for the power law exponent of living cells

usually range between 0.2–0.4 for adherent cells suggesting
glassy dynamics [4,14]. In vitro experiments and theory
suggest that transiently cross-linked actin networks gene-
rate a broad spectrum of relaxation times typical for a
power law behavior with β ¼ 0.5 below the characteristic
frequency (2π=τoff , τoff being the unbinding time of the
cross-linker) [16]. It is still unclear why rheological
properties found for living cells and those of artificial
actin cortices are different. Recently, Mulla et al. could
show that transient cross-linking of actin filaments combi-
ned with external stress leads to lowering of the power law
exponent [17]. Here, the goal is to examine how internal
stress changes the viscoelastic properties of living cells.
Therefore, we require a viscoelastic model that permits to
relate the prestress of cells to the fluidity obtained from
deformation-relaxation experiments. Our viscoelastic
model of the cortex is based on time-independent cortical
prestress to capture the contractility of the actomyosin
cortex and the power law rheology suitable to describe the
time-dependent deformation and relaxation of confluent
and weakly adherent cells. Drugs like blebbistatin [18] and
calyculin A [19] were administrated to decrease or increase
contractility. We found that cortex fluidity decreases with
increasing prestress recovering a power law exponent of

PHYSICAL REVIEW LETTERS 125, 068101 (2020)

0031-9007=20=125(6)=068101(5) 068101-1 © 2020 American Physical Society

https://orcid.org/0000-0001-8785-8293
https://orcid.org/0000-0001-5446-4108
https://orcid.org/0000-0002-2860-3538
https://orcid.org/0000-0002-0773-2963
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.068101&domain=pdf&date_stamp=2020-08-06
https://doi.org/10.1103/PhysRevLett.125.068101
https://doi.org/10.1103/PhysRevLett.125.068101
https://doi.org/10.1103/PhysRevLett.125.068101
https://doi.org/10.1103/PhysRevLett.125.068101


0.5 expected for transiently cross-linked actin networks in
the absence of tension [20]. From scrutinizing the cortex
thickness and its mesh size [Figs. 1(a)–1(d), [21]) with
scanning electron microscopy and fluorescence micros-
copy, it is safe to treat the cortex as a two-dimensional
continuous material neglecting bending stiffness and area
shear modulus [42]. The cortex resists deformation only by
its area compressibility modulus and prestress. The pre-
stress term T0 mirrors predominately actin architecture and
myosin activity of the cortex as shown by Paluch and
coworkers [10,11] but also includes contributions from
membrane tension that occur due to attachment of the actin
network to the plasma membrane via specialized cross-
liners such as ezrin or moesin [13,22,43]. The area
compressibility modulus KA is the 2D elastic modulus
of the shell and reflects its time-dependent elastic resistance
of the active shell to area increase [23]. We refer to this
model as the viscoelastic Evans model throughout the text
due to his seminal and initial work on cortex mechanics
[42]. Viscoelasticity of the 2D area compressibility
modulus is assumed to follow a power law. Minimizing
free energy assuming constant volume leads to mini-
mal surfaces of constant curvature. The force (f) balance
at the equatorial radius for cells between two parallel plates
reads:

f ¼ 2πR0R2
i

R2
0 − R2

i
ðT0 þ KAαÞ ð1Þ

with R0 as the equatorial radius, Ri the contact radius, α ¼
ðΔA=A0Þ the areal strain, T0 the prestress, and KA the area-
compressibility modulus of the cortex. It is straightforward
to cast the model into a nondimensional form that permits
us to write Eq. (1) as gðξÞ ¼ ðf=RcTÞ, with ξ ¼ zp=Rc. zp
is the distance between the plates, Rc the initial radius of the
cell in suspension and T denotes the overall homogeneous
tension. Hence, gðξÞ and αðξÞ are generic functions that
only need to be computed once. Both functions can easily
be approximated by polynomials gðξÞ ≈P

3
i¼1 ciξ

i and
αðξÞ ≈P

3
i¼1 diξ

i permitting one to obtain an analytical
solution of the corresponding elastic-viscoelastic problem
[21]. The general hereditary integral for the restoring force
during parallel-plate compression [0 < t < tm, Eq. (2)] and
relaxation (t > tm) reads [24]:

f ¼ gðξÞRc

�

T0 þ
Z

s

0

K̃Aðt − τÞ ∂αðτÞ∂τ dτ
�

ð2Þ

with s ¼ t for compression and s ¼ tm for relaxation
( _α ¼ 0). The integrals can be solved by using ξ ≈
ðv0t=RcÞ for compression with the constant velocity v0
and assuming a power law behavior of K̃A ¼ KAðt=t0Þ−β
with the time-scaling parameter t0 [21]. The general
scheme described here can also be used to describe the

deformation of adherent and confluent cells with various
indenter geometries [21].
We used an atomic force microscope to examine the

viscoelastic properties of fibroblasts (3T3) and MDCK II

FIG. 1. (a) CLSM image (xz plane) of a MDCK II cell (plasma
membrane stainedwithCellMask) clamped between cantilever and
substrate. White lines show the parametrization. (b) Left side:
STED image (xy plane) of the cellular cortex (green: actin) of a
MDCK II cell. Right side: reconstruction of the cortex [21].
(c) SEM image of a MDCK II cell revealing its cortex structure
(right). (d) Mesh size analysis of cortex extracts [21]. (e) Typical
compression (i) at v0 ¼ 0.5 μm=s followed by force relaxation (ii)
of a MDCK II cell and fits according to the Hertz model (blue line,
E0 ¼ 450 Pa, β ¼ 0.22) and the Evans model (red line,
T0 ¼ 0.75 mN=m, KA ¼ 0.44 N=m, β ¼ 0.49). The inset shows
the time evolution of the contour. (f) Varying the compression
velocity does not impact the fitting results: T0 ¼ 0.83 mN=m,
KA ¼ 0.39 N=m, β ¼ 0.42 for a MDCK II cell compressed with
0.5 μm=s and T0 ¼ 0.57 mN=m, KA ¼ 0.24 N=m, β ¼ 0.43 for
the same cell compressed at 5 μm=s. (g) Compression-relaxation
curve of a MDCK II cell after blebbistatin treatment showing
substantial softening (v0 ¼ 0.5 μm=s). Blue line: Hertz fit
(E0 ¼ 62 Pa, β ¼ 0.41). Red line: Evans fit (T0 ¼ 0.02 mN=m,
KA ¼ 0.002 N=m, β ¼ 0.57). (h) MDCK II cell after calyculin A
treatment. Blue line: Hertz fit (E0 ¼ 1097 Pa, β ¼ 0.18). Red line:
Evans fit (T0 ¼ 1.6 mN=m, KA ¼ 2.36 N=m, β ¼ 0.4).
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cells in a confluent andweakly adhered state. For parallel-plate
compression experiments, tipless cantilevers were used to
compress weakly adhering cells (Fig. 1), while cantilevers
equipped with spherical (diameter: 3.5, 6.6, 15 μm) and
conical tips (≈18° half cone angle) were employed for
indentation experiments (Fig. 2). We used constant approach
and retraction velocities between 0.5–25 μm=s and a relax-
ation timeof several seconds.As indicated, either cytochalasin
D, blebbistatin or calyculin A were added to cell medium
shortly before cell seeding [21].
Figure 1(e) shows a typical compression-relaxation

experiment of a single MDCK II cell using parallel-plate
geometry. It is divided into the compression phase (i) during
which the cell is loaded at constant velocity until the yield
force is reached at tm and subsequent force relaxation (ii) at
constant distance between the plates. The full curve from
the contact to the end of the relaxation curve was modeled
with Eq. (2) (red line) by adapting the three fitting
parameters, cortical tension T0, area-compressibility modu-
lus KA, and the power law exponent β. Equation (2)
requires input regarding the size of each cell (Rc), which
was measured using light microscopy prior to compression.
For comparison, we also fitted the viscoelastic Hertz model
(blue lines) to the data, which falls short in describing the
curves, especially at low strain where the prestress T0

dominates, and directly at the onset of relaxation [21]. The
prestress captures the linear onset of the indentation or
compression curve since at low strain the force response

can be approximated as f ≈ T0c1zp, with c1 the leading
coefficient of the polynomial gðξÞ at small zp. This can be
illustrated by attempting to fit force-indentation curves with
the Evans model using T0 ¼ 0 [21]. As a consequence, β
values obtained from viscoelastic Hertz mechanics are
systematically smaller than those provided by the Evans
model [21]. Figure 1(f) shows representative fits of Eq. (2)
to compression-relaxation curves of MDCK II cells loaded
with 0.5 and 5 μm=s, respectively. As required, the
viscoelastic parameters are not impacted in this moderate
velocity regime. However, since hydrodynamic drag at the
onset of the compression curve is only negligible at low
approach speed, subsequent experiments were carried out
predominately at low speed (≤1 μm=s). The impact of
blebbistatin and calyculin A on the compression-relaxation
curves is shown exemplarily in Figs. 1(g) and 1(h), while
mean values are provided in Fig. 3. The softening of cells
due to stalling of myosin motors is mirrored in smaller
cortical tension and larger power law exponents, compared
to untreated cells. This is particularly distinct for MDCK II
cells, while fibroblasts in suspension are less affected [21].
An increase in β is indicative of cortex fluidization, which
we attribute to a loss of transient cross-links otherwise
provided by myosin bundles. Administration of calyculin
A, which is a phosphatase inhibitor that increases myosin II
processivity, generates only slightly larger prestress
(contractility) and smaller β values, indicative of cell
stiffening. Knowledge of cortex thickness and mesh size
[[21], Figs. 1(b) and 1(d)] allows us to estimate the area
compressibility modulus from KA ≈ ð3kBTl2p=ζ2Þðd=l3cÞ,
with the distance between cross-links lc ≈ ζ4=5l1=5p and
the persistence length lp of 17 μm [20]. With a mesh size
ζ of 25–250 nm and a cortex thickness d in the range of
100–1500 nm [Figs. 1(b) and 1(d), [21] ] we arrive for KA
at values ranging from 0.3 mN=m up to >10 N=m, which
is in good accordance with our results. Notably, the same
arguments leave us with Young’s modules in the range of 3
up to 7 MPa, which is at least two orders of magnitude
higher than values obtained from the Hertz model
[Fig. 2(b)]. Experimentally, the validity of a viscoelastic
model can be verified by testing whether the two models
generate viscoelastic parameters that are independent of the
choice of indenter geometry or size. For this purpose, we
used confluent MDCK II cells, which are easily probed
with different indenter geometries and adapted the model
according to the new overall geometry (Fig. 2, [21]).
Generally, confluent MDCK II cells are softer and more
fluid compared to weakly adhered cells. Importantly, we
find that the Young’s modulus obtained from the Hertz
model depends on the size of the indenter. Larger radii of
spherical and conical indenters result in systematically
smaller Young’s modules rendering the Hertz model
unsuitable to provide geometry-invariant viscoelastic
parameters. In contrast, neither cortex tension nor area
compressibility modules depend on the indenter size. It is,

FIG. 2. (a) Indentation-retraction curve of a confluent MDCK II
cell probed with a conical indenter and subject to fitting with the
viscoelastic Evans model (red line) and Hertz model (blue line),
respectively. The insets show a cross section of the cell and the
computed shape after indentation, respectively (scale bar:
10 μm). (b) Young’s modulus E0 of confluent MDCK II cells
obtained for different indenter geometries (cone, spheres with
various diameters). (c),(d) Corresponding T0 and KA obtained
from fitting with the viscoelastic Evans model.
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however, conceivable that other cell types are sufficiently
well described by contact models. The Evans model is
suitable to describe force relaxation curves over the entire
experimental timescale independent of compression speed
and indenter geometry. A poroelastic behavior of the cells
(MDCK II) was proposed to describe the initial relaxation
response after fast loading [44]. Here, we show that this
initial drop is well captured by simple power law rheology
but requires treatment of the actomyosin cortex as a
prestressed shell [Fig. 1(g)].
Therefore, the Evans model paves the way to address a

fundamental problem in cell rheology, the apparent dis-
crepancy between the rheology of living cells with glassy
dynamics providing β values of 0.2 and the rheology of
transiently cross-linked actin networks expecting β values
of 0.5 reflecting the broad distribution of relaxation times
[16]. First, we found that the power law exponents obtained
from the Hertz model are systematically lower (β̄ ¼ 0.2)
than those from the Evans model (β̄ ¼ 0.4). Second, cells
with stiffer cortices display a smaller power law exponent
(Fig. 3). Specifically, β decreases for both cell types and all
treatments logarithmically with KA [Fig. 3(b), [21] ]. This
behavior has also been predicted by Gardel et al. [45] for
the differential modulus and Kollmannsberger et al. [15] for
the compliance of various cell types. Importantly, the
model also allows to correlate internal prestress with
fluidity, which suggests that the viscoelastic parameters
are not independent. By compiling all data (cell types,
indenter geometries, and drug treatment), we found that an
increase in T0 is accompanied by a reduction of the power
law coefficient [Fig. 3(a)], which suggests that cells with
a more contractile cortex are also less fluid. We also
artificially increased tension by addition of glutardialde-
hyde (GDA) that contracts the cortex to generate solidlike
shells with extremely low β values. Vice versa, cytochalasin
D, a potent inhibitor of actin polymerization softens the
cells and increases fluidity to a similar extent than bleb-
bistatin (Fig. 3). Recently, Mulla et al. found that artificial

actin networks show a decrease of β with increasing
stress [17], suggesting that the glassy dynamics of the
cortex are a natural consequence of transient cross-links
combined with intrinsic prestress. Here, we can confirm
that increased myosin activity increases the prestress and in
turn also lowers the power law exponent. In the absence of
motor activity and therefore low prestress T0, β is close to
0.5, as expected for reversibly cross-linked actin filaments
at low frequency [16]. Notably, Yao et al. examined the
rheology of actin networks, cross-linked by α actinin,
showing that external stress delays the onset of relaxation
and flow, essentially extending the regime of solidlike
behavior to much lower frequencies [46]. Taken together,
the cortex forms an active shell, mechanically characterized
by prestress, area compressibility and fluidity. At low strain
the prestress or effective surface tension [23] dominates and
reflects actin architecture (filament length, mesh size, and
thickness), attachment to the plasma membrane, and
contractility [10,43]. At larger strain, area dilatation of
the shell becomes appreciable [22,47] and the response to
compression becomes time dependent.
In conclusion, we found that a viscoelastic shell model is

capable of describing cell compression and relaxation
experiments over the entire timescale in a consistent
manner. MDCK II cells show a decrease in cortex fluidity
with increasing prestress and area compressibility modulus,
thereby closing the gap between rheological experiments of
artificial actin networks and living cells.

The work was financially supported by the DFG
[Grant No. SFB937(A8): A. J. and M. T.; Grant No. SFB
1027(A9): F. L.) and the VW foundation (“Living Foams”:
A. J. and M. T.).

*mtarant@gwdg.de
†ajansho@gwdg.de

[1] B. G. Godard and C.-P. Heisenberg, Curr. Opin. Cell Biol.
60, 114 (2019).

[2] J. R. Lange and B. Fabry, Exp. Cell Res. 319, 2418 (2013).
[3] D. A. Fletcher and R. D. Mullins, Nature (London) 463, 485

(2010).
[4] J. Rother, H. Nöding, I. Mey, and A. Janshoff, Open Biol. 4,

140046 (2014).
[5] J. R. Staunton, B. L. Doss, S. Lindsay, and R. Ros, Sci. Rep.

6, 19686 (2016).
[6] P. D. Garcia and R. Garcia, Nanoscale 10, 19799 (2018).
[7] P.-H. Wu et al., Nat. Methods 15, 491 (2018).
[8] M. Kelkar, P. Bohec, and G. Charras, Curr. Opin. Cell Biol.

66, 69 (2020).
[9] T. M. Svitkina, Trends Cell Biol. 30, 556 (2020).

[10] P. Chugh, A. G. Clark, M. B. Smith, D. A. D. Cassani, K.
Dierkes, A. Ragab, P. P. Roux, G. Charras, G. Salbreux, and
E. K. Paluch, Nat. Cell Biol. 19, 689 (2017).

[11] P. Chugh and E. K. Paluch, J. Cell Sci. 131, jcs186254
(2018).

FIG. 3. Power law exponents β of MDCK II cells (circles) and
fibroblasts (squares) as a function of prestress T0 and area-
compressibility modulus KA subject to different indenter geom-
etries and drug treatments (see legend). MDCK confl.: confluent
MDCK II cells deformedwith conical and spherical indenters (light
blue, data compiled from Fig. 2); Blebb: Blebbistatin; CytD:
Cytochalasin D; CalA: Calyculin A; GDA: Glutardialdehyde;
Dashed lines are fits illustrating the logarithmic dependencies [15].

PHYSICAL REVIEW LETTERS 125, 068101 (2020)

068101-4

https://doi.org/10.1016/j.ceb.2019.05.007
https://doi.org/10.1016/j.ceb.2019.05.007
https://doi.org/10.1016/j.yexcr.2013.04.023
https://doi.org/10.1038/nature08908
https://doi.org/10.1038/nature08908
https://doi.org/10.1098/rsob.140046
https://doi.org/10.1098/rsob.140046
https://doi.org/10.1038/srep19686
https://doi.org/10.1038/srep19686
https://doi.org/10.1039/C8NR05899G
https://doi.org/10.1038/s41592-018-0015-1
https://doi.org/10.1016/j.ceb.2020.05.008
https://doi.org/10.1016/j.ceb.2020.05.008
https://doi.org/10.1016/j.tcb.2020.03.005
https://doi.org/10.1038/ncb3525
https://doi.org/10.1242/jcs.186254
https://doi.org/10.1242/jcs.186254


[12] R. G. Fehon, A. I. McClatchey, and A. Bretscher, Nat. Rev.
Mol. Cell Biol. 11, 276 (2010).

[13] G. Salbreux, G. Charras, and E. Paluch, Trends Cell Biol.
22, 536 (2012).

[14] B. Fabry, G. N. Maksym, J. P. Butler, M. Glogauer, D.
Navajas, and J. J. Fredberg, Phys. Rev. Lett. 87, 148102
(2001).

[15] P. Kollmannsberger and B. Fabry, Annu. Rev. Mater. Res.
41, 75 (2011).

[16] C. P. Broedersz, M. Depken, N. Y. Yao, M. R. Pollak, D. A.
Weitz, and F. C. MacKintosh, Phys. Rev. Lett. 105, 238101
(2010).

[17] Y. Mulla, F. C. MacKintosh, and G. H. Koenderink, Phys.
Rev. Lett. 122, 218102 (2019).

[18] K. A. Beningo, K. Hamao, M. Dembo, Y. li Wang, and H.
Hosoya, Arch. Biochem. Biophys. 456, 224 (2006).

[19] L. Chartier, L. L. Rankin, R. E. Allen, Y. Kato, N. Fusetani,
H. Karaki, S. Watabe, and D. J. Hartshorne, Cell Motil.
Cytoskeleton 18, 26 (1991).

[20] M. L. Gardel, Science 304, 1301 (2004).
[21] See the Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.125.068101 for for
details, which includes Refs. [10,15,20,22–41].

[22] A. Pietuch, B. R. Brückner, T. Fine, I. Mey, and A. Janshoff,
Soft Matter 9, 11490 (2013).

[23] E. Fischer-Friedrich, Y. Toyoda, C. J. Cattin, D. J. Müller,
A. A. Hyman, and F. Jülicher, Biophys. J. 111, 589 (2016).

[24] R. Christensen, Theory of Viscoelasticity (Elsevier,
New York, 1982).

[25] T. M. Svitkina, A. B. Verkhovsky, and G. G. Borisy,
J. Struct. Biol. 115, 290 (1995).

[26] H. Nöding, M. Schön, C. Reinermann, N. Dörrer, A.
Kürschner, B. Geil, I. Mey, C. Heussinger, A. Janshoff,
and C. Steinem, J. Phys. Chem. B 122, 4537 (2018).

[27] K. Bando, J. Biomech. Eng. 136, 101003 (2014).
[28] M. Biro, Y. Romeo, S. Kroschwald, M. Bovellan, A. Boden,

J. Tcherkezian, P. P. Roux, G. Charras, and E. K. Paluch,
Cytoskeleton 70, 741 (2013).

[29] C. Delaunay, J. Math. Pures Appl. 6, 309 (1841).

[30] A. Dzementsei, D. Schneider, A. Janshoff, and T. Pieler,
Biol. Open 2, 1279 (2013).

[31] T. M. Svitkina, Int. J. Biochem. Cell Biol. 86, 37
(2017).

[32] J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868
(1993).

[33] D. Flormann, M. Schu, E. Terriac, M. Koch, S. Paschke, and
F. Lautenschläger, bioRxiv (2020) https://doi.org/10.1101/
2020.01.06.896761.

[34] S. Münster and B. Fabry, Biophys. J. 104, 2774 (2013).
[35] H. Elmoazzen, J. Elliott, and L. McGann, Cryobiology 45,

68 (2002).
[36] K. Schulze, S. Zehnder, J. Urueńa, T. Bhattacharjee, W.

Sawyer, and T. Angelini, J. Biomech. 53, 210 (2017).
[37] B. R. Brückner, H. Nöding, and A. Janshoff, Biophys. J.

112, 724 (2017).
[38] R. Dimova and C. Marques, The Giant Vesicle Book (CRC

Press, Taylor & Francis Group, Boca Raton, 2019).
[39] G. T. Charras, C.-K. Hu, M. Coughlin, and T. J. Mitchison,

J. Cell Biol. 175, 477 (2006).
[40] A. R. Harris and G. T. Charras, Nanotechnology 22, 345102

(2011).
[41] A. G. Clark, K. Dierkes, and E. K. Paluch, Biophys. J. 105,

570 (2013).
[42] E. Evans, R. Waugh, and L. Melnik, Biophys. J. 16, 585

(1976).
[43] B. R. Brückner, A. Pietuch, S. Nehls, J. Rother, and A.

Janshoff, Sci. Rep. 5, 14700 (2015).
[44] E. Moeendarbary, L. Valon, M. Fritzsche, A. R. Harris,

D. A. Moulding, A. J. Thrasher, E. Stride, L. Mahadevan,
and G. T. Charras, Nat. Mater. 12, 253 (2013).

[45] M. L. Gardel, F. Nakamura, J. Hartwig, J. C. Crocker, T. P.
Stossel, and D. A. Weitz, Phys. Rev. Lett. 96, 088102
(2006).

[46] N. Y. Yao, C. P. Broedersz, M. Depken, D. J. Becker, M. R.
Pollak, F. C. MacKintosh, and D. A. Weitz, Phys. Rev. Lett.
110, 018103 (2013).

[47] S. Sen, S. Subramanian, and D. E. Discher, Biophys. J. 89,
3203 (2005).

PHYSICAL REVIEW LETTERS 125, 068101 (2020)

068101-5

https://doi.org/10.1038/nrm2866
https://doi.org/10.1038/nrm2866
https://doi.org/10.1016/j.tcb.2012.07.001
https://doi.org/10.1016/j.tcb.2012.07.001
https://doi.org/10.1103/PhysRevLett.87.148102
https://doi.org/10.1103/PhysRevLett.87.148102
https://doi.org/10.1146/annurev-matsci-062910-100351
https://doi.org/10.1146/annurev-matsci-062910-100351
https://doi.org/10.1103/PhysRevLett.105.238101
https://doi.org/10.1103/PhysRevLett.105.238101
https://doi.org/10.1103/PhysRevLett.122.218102
https://doi.org/10.1103/PhysRevLett.122.218102
https://doi.org/10.1016/j.abb.2006.09.025
https://doi.org/10.1002/cm.970180104
https://doi.org/10.1002/cm.970180104
https://doi.org/10.1126/science.1095087
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.068101
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.068101
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.068101
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.068101
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.068101
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.068101
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.068101
https://doi.org/10.1039/c3sm51610e
https://doi.org/10.1016/j.bpj.2016.06.008
https://doi.org/10.1006/jsbi.1995.1054
https://doi.org/10.1021/acs.jpcb.7b11491
https://doi.org/10.1115/1.4028036
https://doi.org/10.1002/cm.21142
https://doi.org/10.1242/bio.20135140
https://doi.org/10.1016/j.biocel.2017.03.009
https://doi.org/10.1016/j.biocel.2017.03.009
https://doi.org/10.1063/1.1143970
https://doi.org/10.1063/1.1143970
https://doi.org/10.1101/2020.01.06.896761
https://doi.org/10.1101/2020.01.06.896761
https://doi.org/10.1016/j.bpj.2013.05.016
https://doi.org/10.1016/S0011-2240(02)00107-4
https://doi.org/10.1016/S0011-2240(02)00107-4
https://doi.org/10.1016/j.jbiomech.2017.01.016
https://doi.org/10.1016/j.bpj.2016.12.032
https://doi.org/10.1016/j.bpj.2016.12.032
https://doi.org/10.1083/jcb.200602085
https://doi.org/10.1088/0957-4484/22/34/345102
https://doi.org/10.1088/0957-4484/22/34/345102
https://doi.org/10.1016/j.bpj.2013.05.057
https://doi.org/10.1016/j.bpj.2013.05.057
https://doi.org/10.1016/S0006-3495(76)85713-X
https://doi.org/10.1016/S0006-3495(76)85713-X
https://doi.org/10.1038/srep14700
https://doi.org/10.1038/nmat3517
https://doi.org/10.1103/PhysRevLett.96.088102
https://doi.org/10.1103/PhysRevLett.96.088102
https://doi.org/10.1103/PhysRevLett.110.018103
https://doi.org/10.1103/PhysRevLett.110.018103
https://doi.org/10.1529/biophysj.105.063826
https://doi.org/10.1529/biophysj.105.063826

