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We introduce the notion of combinatorial gauge symmetry—a local transformation that includes single
spin rotations plus permutations of spins (or swaps of their quantum states)—that preserve the commutation
and anticommutation relations among the spins. We show that Hamiltonians with simple two-body
interactions contain this symmetry if the coupling matrix is a Hadamard matrix, with the combinatorial
gauge symmetry being associated with the automorphism of these matrices with respect to monomial
transformations. Armed with this symmetry, we address the physical problem of how to build quantum spin
liquids with physically accessible interactions. In addition to its intrinsic physical significance, the problem
is also tied to that of how to build topological qubits.
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Quantum liquids of spins are systems where no
magnetic symmetry-breaking order should be detectable
down to zero temperature [1], and instead topological
order exits [2]. On the theoretical side, there are a number
of model Hamiltonians where quantum spin liquid states
exist [3,4]. Gauge symmetries are common in these
models, whether discrete or continuous, intrinsic or
emergent. Many of these gauge models, such as the
Z2 toric code [3] and fracton models such as the X cube
[5,6], are defined using multispin interactions. Here, we
show that exact local Z2 gauge symmetries in these
models can arise from solely two-spin interactions. That
one can generate effective multispin interactions in some
low energy limit of a two-spin Hamiltonian is not
unexpected; what is novel is that the symmetries we
discuss are exact. We articulate a notion of combinatorial
gauge symmetry that underlies why it is possible to
construct local two-spin Hamiltonians with an exact Z2

gauge symmetry.
Algebra-preserving transformations and monomial

matrices.—We start with a set of N spin-1=2 degrees of
freedom, such as the familiar spin models on a lattice with
N sites. The spin operators are Pauli matrices σαi , where
α ¼ x; y; z and i ¼ 1;…; N. Spins on different sites com-
mute, while those on the same site satisfy the usual angular
momentum algebra. Let us ask a simple question: which
transformations of these 3N operators can preserve all
commutation and anticommutation relations? ForN bosons
or fermions, this is a trivial question to answer; the allowed
set of single-particle transformations belong to the unitary
group UðNÞ because either the commutation or anticom-
mutation relations need to be satisfied. But for spins, the
question is harder; one cannot simply mix spatial compo-
nents of different spins and retain both the intra- and
intersite algebra.

The Hilbert space for N spins is 2N dimensional and the
allowed operators in this space are 2N × 2N unitary
matrices, corresponding to the group SUð2NÞ. A generic
transformation on the spin operators σai → Uσai U

† pre-
serves the algebra, but also acts simultaneously on many
spins: it mixes the 3N single-spin operators σai with the
other (multispin) 22N − 1 − 3N generators of SUð2NÞ.
Therefore, if one is to remain with only single-spin terms,
one must work with a much smaller subgroup of SUð2NÞ.
The simplest solution is trivial: only rotate spins individu-
ally by restricting the allowed transformations to SUð2Þ ⊗
SUð2Þ ⊗ � � � ⊗ SUð2Þ or N copies of SU(2). A more
interesting and nontrivial solution is to also allow permu-
tations of spins. (If one wishes to connect to quantum gates,
these transformations correspond to the combination of
one-qubit rotations and the use of two-qubit SWAP gates.)
Any SU(2) transformation on spin i can be represented

by a matrix in the rotation group gi ∈ SOð3Þ that acts on the
spatial components of the vector σ⃗i ¼ ðσxi ; σyi ; σzi Þ⊤. This
representation makes it convenient to combine permuta-
tions and single-spin transformations into monomial matri-
ces. Monomial matrices are generalizations of permutation
matrices such that the nonzero elements in each row and
column are group elements, not simply equal to 1. Here is
an N ¼ 4 example:

0
BBBB@

σ⃗1

σ⃗2

σ⃗3

σ⃗4

1
CCCCA →

0
BBBB@

0 0 g1 0

0 0 0 g2
g3 0 0 0

0 g4 0 0

1
CCCCA

0
BBBB@

σ⃗1

σ⃗2

σ⃗3

σ⃗4

1
CCCCA: ð1Þ

It is clear from this form that monomial matrices are
orthogonal and that the product of any two monomial
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matrices is another monomial matrix. The example above
can be written as a product of the diagonal matrix
Diagðg1; g2; g3; g4Þ and a 4 × 4 permutation matrix.
For arbitrary N, the group of monomial matrices is a

semidirect product of the group generated by the diagonal
matrices Diagðg1;…; gNÞ and the group of permutations
(symmetric group) SN . In mathematical literature, this
particular form of a semidirect product is sometimes
referred to as a wreath product.
To summarize the above: we are pointing out that many-

body spin states admit a group of nontrivial transformations
on the 3N spin components that preserve all spin algebras.
When formulated in this way, the combination of local and
permutation symmetry will allow us to construct exact
lattice gauge theories using only two-body interactions.
Combinatorial gauge symmetry.—One particular sub-

group of monomial transformations, such as in Eq. (1), is
for SO(3) rotations by angle π around a given axis, which
we take to be x̂. This is equivalent to flipping the z
component of spin. We shall use this special case to
construct a microscopic model with local Z2 symmetry.
We term our methodology combinatorial gauge symmetry
for its relation to monomials and permutations.
Consider the lattice depicted in Fig. 1, where 4 “matter”

spins μ are placed on each lattice site, and “gauge” spins σ
are placed on the links. A single site (star) is isolated in
Fig. 1(a), and contains the 4 matter spins and 4 gauge spins
sitting on the links. The gauge spins are shared by
neighboring stars, as depicted in Fig. 1(b). Each matter
spin couples only to its neighboring gauge spins but not to
one another (or other lattice sites). Gauge spins do not
couple to each other. We encode all two-spin (ZZ)
couplings between μza and σzi by a 4 × 4 matrix Wai.
The quantum fluctuations will come from two transverse

fields Γ̃ and Γ acting on the gauge spins and matter spins,
respectively. For generality, we allow Γ and Γ̃ to have
different magnitudes.
Thus the full lattice Hamiltonian is given by

H ¼ −
X
s

�
J
X
a∈s
i∈s

Waiσ
z
iμ

z
a þ Γ

X
a∈s

μxa

�
− Γ̃

X
i

σxi ; ð2Þ

where the s are stars on the lattice.

We shall select the interaction matrix W so as to satisfy
the monomial transformations as in Eq. (1) that act on the z
components of the gauge and matter spins as follows:

σzi →
X4
j¼1

Rijσ
z
j

μza →
X4
b¼1

μzbðL−1Þba: ð3Þ

These are monomial transformations that preserve the spin
commutation and anticommutation relations, as discussed
above. The L (“left”) and R (“right”) matrices act like gauge
transformations on the z components of the gauge andmatter
spins. These monomial matrices have elements �1.
(Henceforth all monomial matrices will be of this kind.)
The requirement that the Hamiltonian Eq. (2) be invari-

ant with respect to transformations Eq. (3) is equivalent to
the requirement that the W matrices be invariant under the
automorphism transformation L−1WR ¼ W, where L and
R are 4 × 4 monomial matrices [7]. [The transverse fields
are also invariant under the transformation Eq. (3), and we
shall return to this point below].
Hadamard matrices [7] satisfy these conditions. These

matrices have elements�1, and all its columns (or rows) are
orthogonal vectors, i.e., W⊤W ∝ 1. (They maximize the
determinant of the information matrix W⊤W.) We pick an
intuitive form ofW, where the coupling between σzi and μ

z
a is

antiferromagnetic when i ¼ a and ferromagnetic otherwise:

W ¼

0
BBBB@

−1 þ1 þ1 þ1

þ1 −1 þ1 þ1

þ1 þ1 −1 þ1

þ1 þ1 þ1 −1

1
CCCCA: ð4Þ

All other choices of W are equivalent by symmetry and will
not affect the spectrum. Specifically, any two Hadamard
matrices W and W0 are equivalent if there exist monomial
matrices S1, S2 such that W0 ¼ S−11 WS2.
Our model further restricts R to be diagonal because any

off-diagonal permutation of gauge spins would deform the
lattice. For example, with our choice of W in Eq. (4), the
following pair satisfies the conditions above:

L ¼

0
BB@

0 þ1 0 0

þ1 0 0 0

0 0 0 −1
0 0 −1 0

1
CCA;

R ¼

0
BB@

−1 0 0 0

0 −1 0 0

0 0 þ1 0

0 0 0 þ1

1
CCA:

ð5Þ

FIG. 1. (a) A single site (star) of the Z2 gauge theory, with 4
matter spins μa on the site, and 4 gauge spins σi on the links.
(b) The full lattice.
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Once we choose an R, we determine L uniquely by solving
the automorphism condition: L ¼ WRW−1. (The number
of −1’s in the diagonal R matrix must be even so that the
corresponding L is a monomial matrices.) Note that
flipping gauge spins, even without permuting them,
requires a simultaneous permutation of matter spins.
The automorphism pair ðL;RÞ directly leads to the local

Z2 gauge symmetry of the full lattice Hamiltonian (2).
Consider an elementary plaquette p depicted in Fig. 2(a)
and define the local gauge transformation

Gp ¼
Y
s∈p

LðμÞ
s

Y
s∈p

RðσÞ
s ; ð6Þ

where LðμÞ
s denotes the operator that permutes and flips the

matter spins at each corner site s of the plaquette as in
Eq. (5): LðμÞ

s μzaðLðμÞ
s Þ−1 ¼ P

b μ
z
aðL−1Þba, as in the trans-

formation in Eq. (3), and similarly for RðσÞ
s on the gauge

spins: RðσÞ
s σzi ðRðσÞ

s Þ−1 ¼ P
j Rijσ

z
j. L

ðμÞ
s is uniquely deter-

mined by the local operator RðσÞ
s that flips the two gauge

spins on links emanating from the site s—just as L is
determined by R. Since here we restrict R to be diagonal,
corresponding to only flipping the gauge spins without
permuting them, the spin flip σz → −σz is simply generated
by σx. Therefore we have

Q
s∈pR

ðσÞ
s ¼ Q

i∈p σ
x
i , where i

runs over all gauge spins in a plaquette. Any two Lmatrices
commute and therefore the plaquette operators do as
well, ½Gp;Gp0 � ¼ 0.
The importance of Gp is that it is a local symmetry of the

full lattice Hamiltonian (2): ½H;Gp� ¼ 0, for all p.
Invariance of the Ising interaction term follows from the
automorphism above, while invariance of the transverse
field terms Γ and Γ̃ follows from two observations. First, all
spin flips by the operator pair ðLðμÞ

s ;RðσÞ
s Þ can be viewed as

180° rotations around the x axis, which commute with σx

and μx. Second, the transverse fields are uniform and
therefore independent of permutations. Therefore, the
Hamiltonian (2) is a gauge theory with a local Z2 gauge
symmetry that is generated by Gp. This symmetry relies on
the locking of the permutations contained in the operators
LðμÞ
s to the Z2 transformations in theRðσÞ

s , which is another
reason that we refer to it as combinatorial gauge symmetry.

One can further construct loop or closed string symmetry
operators on the lattice, as shown in Fig. 2(b). For systems
with boundaries, one can also associate a symmetry
operation to open strings, as depicted in Fig. 2(c). The
loop (or string) operator along a path is composed of both
the gauge spin flips

Q
l σ

x
l, where l are the links along the

path, as well as the corresponding operations on matter
spins

Q
s L

ðμÞ
s applied to each star along the path. In the case

of closed paths, the loop operator is equivalent to a product
of all plaquette operators Gp enclosed by the loop.
Special case: Z2 gauge theory.—The Hamiltonian

Eq. (2) obeys a local Z2 gauge symmetry for all values
of the parameters J, Γ, and Γ̃. Here we shall obtain, as a
particular limit, an effective Hamiltonian with a 4-spin
interaction on a star, which lands directly onto the more
familiar Z2 gauge theory on the square lattice [8,9], in the
following manner.
Isolate a single star with its 4 spins μ on the site and 4

gauge spins σ on the links, as depicted in Fig. 1(a). Let us
freeze for the moment a given configuration of the gauge
spins σzi ; i ¼ 1, 2, 3, 4 in the z basis. The Hamiltonian (2)
for each matter spin μa on a star can be viewed as that of a
single spin in a magnetic field, whose eigenvalues are
functions of σzi :

Eð�Þ
a ðσz1; σz2; σz3; σz4Þ ¼ �

�
J2
�X4

i¼1

Waiσ
z
i

�2

þ Γ2

�1=2
: ð7Þ

The expression in Eq. (7) can be written, for any value of Γ
and J, as

Eð�Þ
a ¼ �C0 � C2

X4
i≠j

WaiWajσ
z
iσ

z
j

� C4Wa1Wa2Wa3Wa4σ
z
1σ

z
2σ

z
3σ

z
4; ð8Þ

where C0, C2, and C4 are constants that depend on J and Γ.
This expression follows from expanding the square root in
Eq. (7) in powers of the σzi and using ðσzi Þ2 ¼ 1 and
ðWaiÞ2 ¼ 1; the binary polynomial inside the square root
terminates and the only terms that remain are of the form in
Eq. (8). While the expansion is useful in proving the
identity between Eqs. (7) and (8), we remark that the result
is exact (nonperturbative), because both expressions only
take values in discrete sets.
The low energy manifold of states corresponds to the

sum over the lowest eigenvalues,Hstar
eff ¼ P

4
a¼1 E

ð−Þ
a , which

is separated from the next levels by a gap of size at least
2jΓj. We thus arrive at the following simple effective
Hamiltonian for a single star:

Hstar
eff ¼ γ − λσz1σ

z
2σ

z
3σ

z
4; ð9Þ

where the coefficients γ and λ are functions of Γ and J are
explicitly given in the Supplemental Material [10]. These

FIG. 2. (a) Operator generating the local Z2 gauge trans-
formation on an elementary plaquette, Gp in Eq. (6). (b) A
closed loop operator along a path γC. (c) An open string operator
along a path in a system with boundaries.
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relations follow from the consistency between Eqs. (7) and
(8). The parity P≡ σz1σ

z
2σ

z
3σ

z
4 for the ground state of Eq. (9)

is P ¼ þ1, since λ > 0. By modifying the matrix W, we
could flip the sign of λ and have instead the P ¼ −1 parity
sector as the ground state (for example, by flipping the sign
of any one column of W).
Let us now turn to the low energy effective model for the

whole lattice. In the limit jΓj ≫ J, we find the effective
Hamiltonian

Heff ¼ −λ
X
s

Y
i∈s

σzi − Γ̃
X
i

σxi : ð10Þ

This Hamiltonian is exactly that of the Z2 quantum gauge
theory, which supports a topological phase for Γ̃=λ below a
threshold. To get the toric or surface code limit, one only
has to notice that the lowest order term that survives in a
perturbation theory in Γ̃=λ is the term that flips all spins
around a plaquette [11–13].
Taking jΓj → ∞, while keeping λ fixed, opens an infinite

gap to the excited sectors, where at least one Eð−Þ
a becomes

EðþÞ
a . The splitting 2jλj between the two parity states within

the lowest energy sector remains finite. The expansion of λ
in the regime of J ≪ Γ yields λ ¼ 12J4=Γ3 þOðJ6=Γ5Þ.
(Note that terms of order Γ vanish.) To access this regime
we would fix λ and tune J such that J ¼ jλΓ3=12j1=4.
Physically, in this limit the matter fields μ can be “inte-
grated out” to obtain the exact four-spin effective
Hamiltonian.
We corroborate the above analytical features with

numerical studies in the Supplemental Material [10]. All
degeneracies are confirmed to machine precision.
Combinatorial gauge symmetry for both electric and

magnetic loops.—So far we used the combinatorial gauge
symmetry to construct a model withZ2 plaquette operators.
Here we shall construct a model with both the Z2 plaquette
and star operators, just as in the toric code, but still using
only at most two-body interactions.
We add another four spin-1=2 degrees of freedom to the

center of all plaquettes in addition to the ones on the star.
We denote these additional matter spins on the dual lattice
as τ, shown in Fig. 3(a). Furthermore, the pairwise
interaction couples τx and σx, i.e., an XX interaction.
The full Hamiltonian is

H ¼ −
X
s

�
J
X
a∈s
i∈s

Waiσ
z
iμ

z
a þ Γ

X
a∈s

μxa

�

−
X
p

�
J
X
b∈p
j∈p

Wbjσ
x
jτ

x
b þ Γ

X
b∈p

τzb

�
: ð11Þ

In other words, on the dual lattice the spin components are
transformed by X ↔ Z relative to the original lattice. There
is no need for a transverse field on the gauge σ spins in this

model; quantum dynamics is already present through the
presence of both XX and ZZ interactions.
By analogy with the plaquette operators Gp in Eq. (6),

there is a set of star operators Fs, according to combina-
torial gauge symmetry, which exists on the dual lattice [see
Fig. 3(b)]:

Fs ¼
Y
p∈s

LðτÞ
p

Y
i∈s

σzi : ð12Þ

The dual, “left” operators LðτÞ
p flip τ spins in the x basis just

like the operators LðμÞ
s in Eq. (6) flip μ spins in the z basis.

By construction, these two operators commute:
½LðμÞ

s ;LðτÞ
p � ¼ 0. Therefore, we have a star and a plaquette

operator that also commute: ½Gp; Fs� ¼ 0, exactly as in the
toric code. It is easy to check that the Hamiltonian
commutes with both stars and plaquettes: ½H;Gp� ¼
½H;Fs� ¼ 0.
Given the commuting set of star and plaquette operators,

the Hamiltonian in Eq. (11) is equivalent to the toric code in
the asymptotic limit of large Γ, except that it contains only
two-body interactions and fields. This is a direct result of
the combinatorial gauge symmetry.
Extension to other topological states.—Fracton topo-

logical phases [6,14–16] (for a review, see Ref. [17]) are
novel phases of matter with a robust subextensive ground
state degeneracy and with excitations that are strictly
immobile, or constrained to move within a subdimensional
manifold. Apart from theoretical interest such as classi-
fications of phases of matter and formulations in terms of
higher-rank gauge theories [18], fracton systems are also
believed to hold promise for fault-tolerant quantum com-
putation, as well as robust quantum memory [16]. In spite
of the intensive theoretical investigations on fractonic
models, experimental realizations directly in terms of spins
have barely been discussed [19].
The building blocks of our Z2 gauge theory can also be

used to construct 3D models, such as one of the simplest
fractonic model, the X cube [5,6]. The construction with
matter and gauge spins parallels closely that in 2D, and we
provide details for the construction of both the 3D

FIG. 3. (a) A single plaquette of the Z2 gauge theory, with 4
gauge spins σi on the links, 4 matter spins μa on the site, and 4
additional matter spins τb at the center of the plaquette. (b) A
single star operator Fs.
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toric code and the X cube model in the Supplemental
Material [10].
Summary and outlook.—We have argued that many-

body spin states admit a combinatorial gauge symmetry
and we have used it to construct quantum spin liquids out of
only two-body and single-body terms. The symmetry holds
exactly for all ranges of parameters in the Hamiltonians that
we have constructed. This presents an alternative path to
explore quantum spin liquids in systems without four-body
(or higher) interaction terms. Our approach may prove
useful in the quest for topological qubits (via surface
codes), which can potentially be hosted by certain quantum
spin liquids.
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