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The understanding of thermodynamic glass transition has been hindered by the lack of proper models
beyond mean-field theories. Here, we propose a three-dimensional lattice glass model on a simple cubic
lattice that exhibits the typical dynamics observed in fragile supercooled liquids such as two-step
relaxation, super-Arrhenius growth in the relaxation time, and dynamical heterogeneity. Using advanced
Monte Carlo methods, we compute the thermodynamic properties deep inside the glassy temperature
regime, well below the onset temperature of the slow dynamics. The specific heat has a finite jump towards
the thermodynamic limit with critical exponents close to those expected from the hyperscaling and the
random first-order transition theory for the glass transition. We also study an effective free energy of
glasses, the Franz-Parisi potential, as a function of the overlap between equilibrium and quenched
configurations. The effective free energy indicates the existence of a first-order phase transition, consistent
with the random first-order transition theory. These findings strongly suggest that the glassy dynamics of
the model has its origin in thermodynamics.
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A thermodynamic (or ideal) glass transition in finite low
dimensions has been actively discussed both theoretically
and experimentally for decades since the seminal works
by Kauzmann [1], and Adam and Gibbs [2]. A mean-field
theory, the random first-order transition (RFOT) theory of
structural glasses, proposed and developed in Refs. [3–6],
indeed shows that a thermodynamic glass transition at finite
temperature exists with vanishing configuration entropy, or
complexity [7]. In finite dimensions, numerical simulation
of models of fragile supercooled liquids is a promising way
to theoretically explore a possibility of the thermodynamic
glass transition. However, the notoriously long relaxation
time prevents us to access directly low-temperature thermo-
dynamics of glass-forming supercooled liquids. Although
recent progress on particle models simulated using the
swap Monte Carlo method [8,9] allows us to get much
more stable glass configurations at lower temperature or
higher density, the thermodynamic glass transition is still
inaccessible.
In an analogy to phase transitions into long-range

ferromagnetic and crystal states, the lower critical dimen-
sion for the thermodynamic glass transition in models with
discrete symmetry may be lower than that in models with
continuous symmetry. Thus, it would be crucial to explore
a possibility of a thermodynamic glass transition in finite-
dimensional lattice models with discrete symmetry.
Although several simple lattice models with the mean-field
thermodynamic glass transition have already been pro-
posed [10–12], they are not fully suitable to study the

finite-dimensional glass transition: For the models in
Refs. [10,12], their mean-field glass transitions are
turned into a crossover in finite dimensions or their low-
temperature glassy states are unstable due to crystallization.
The other model [11], while having the typical glassy
dynamics, is a monodisperse model, where an efficient
algorithm such as the swap method [8,9] is not known.
Another lattice glass model was proposed in Ref. [13],
which is shown to have irregular configurations as an
ordered state. However, its autocorrelation function
decays without any plateau even at low temperature.
Thus the model does not have the essential features of
the structural glasses.
To find finite-dimensional models that allow us to access

equilibrium low-temperature states without crystallization
is still actively discussed. In this Letter, we propose a
simple lattice glass model to study glassy behaviors in three
dimensions. Our model, in contrast to several lattice models
[10,12,13], shows typical two-step relaxation dynamics as
observed in fragile supercooled liquids. We study a binary
mixture of the model, where the nonlocal swap dynamics
explained below provide the benefits for equilibration. By
large-scale Monte Carlo simulations, we equilibrate the
system at temperature well below that where two-step
relaxation emerges. We study the effect of a coupling field
conjugate to the overlap between the system and a
quenched configuration using the Wang-Landau algorithm
[14,15], and compute the quenched version of the Franz-
Parisi potential [16–18], an effective free energy of the
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glass transition. Our results show that the system indeed
has a thermodynamic behavior consistent with the
RFOT theory.
A lattice glass model we study in this Letter is a binary

mixture of particles defined by the Hamiltonian with a
positive constant A,

Hðn; σÞ ¼ A
XL3

i¼1

ni

�X

j∈∂i
nj − lσi

�
2

; ð1Þ

where the first summation runs over all the lattice sites. The
lattice is the simple cubic lattice with linear dimension L.
We denote the occupancy of site iwith ni ∈ f0; 1g, and the
type of a particle at site i with σi ∈ f1; 2g. The parameter
lσi determines the most favorable number of neighboring
particles of the type σi particle. Here, we consider a binary
mixture of l1 ¼ 3 and l2 ¼ 5 particles. The boundary
conditions in all the directions are periodic. We study this
model at finite temperature T by Monte Carlo simulation
that preserves the number of each type of particles [19]:
Two randomly chosen particles are swapped or a randomly
chosen particle is moved to a vacant site of the lattice
chosen also randomly with the Metropolis probability.
Depending on the density of each type of particle, ρ1
and ρ2, with fixed total density ρ ¼ ρ1 þ ρ2 ¼ 0.75, our
model has crystal phases at low temperature; see Fig. 1.
When ρ1 ¼ 0.3 and ρ2 ¼ 0.45, we confirmed the absence
of a drop in the energy and a large peak in the specific heat
in the glassy region, indicating no crystallization.
Our model is somewhat related to a softened model

of a lattice glass proposed by Biroli and Mézard
(BM) [10,20]. The Hamiltonian of their model HBM ¼
A
P

i¼1 niθð
P

j∈∂i nj − lσiÞð
P

j∈∂i nj − lσiÞ with the

Heaviside step function θðxÞ. The crucial difference
between the two models is the number of neighboring
particles that each particle energetically favors: In the soft
BMmodel, any number of neighboring particles lower than
lσ achieves the lowest energy while only lσ does in our
model. This slight change makes the entropy of our model
at low temperature smaller than that of the BM model and
the dynamics more similar to fragile supercooled liquids.
The dynamics of our model is studied by a local

Monte Carlo algorithm [19], which usually gives dynamics
qualitatively similar to molecular and Brownian dynamics.
In our simulation, particles can move to only neighboring
sites. While any physical quantity of our model relaxes
rapidly at high temperature, the relaxation gets extremely
slow with decreasing temperature. To quantify the slow
dynamics of the model, we study the autocorrelation
function

Cðt; twÞ ¼
�1

N

P
iδσiðtwÞ;σiðtwþtÞ − C0

1 − C0

�
; ð2Þ

where tw is the waiting time, C0 ¼ ρðρ21 þ ρ22Þ, N ¼ ρL3

the total number of particles, and the summation is taken
over sites with niðtwÞ ¼ 1. We also measure the dynamical
susceptibility χ4ðt; twÞ characterizing the dynamical hetero-
geneity observed in supercooled liquids. In the limit
tw → ∞, the system is in equilibrium and we denoteCðtÞ ¼
Cðt; tw → ∞Þ and χ4ðtÞ ¼ χ4ðt; tw → ∞Þ. We set tw to a
sufficiently large value to study the equilibrium dynamics
of the model so that Cðt; twÞ and Cðt; tw=10Þ agree with
each other. Typical values of tw range from 102 to 108

Monte Carlo sweeps depending on temperature. Whereas
the autocorrelation function of the system decays rapidly at
high temperature, a two-step relaxation emerges in CðtÞ at
temperature lower than T=A ≃ 0.6, see Fig. 2 [see also
Supplemental Material [21] for a physical interpretation of
the plateau in CðtÞ]. The dynamical susceptibility χ4ðtÞ
shows a peak at finite time, indicating the emergence of
heterogeneous dynamics of the system [7,26–29]. The peak
value grows with decreasing temperature (see inset of
Fig. 2), and it suggests that the dynamics gets more
heterogeneous at lower temperature.
The RFOT theory of the glass transition predicts slow

dynamics frozen at a dynamical transition temperature
without any thermodynamic anomaly. In the vicinity of
the dynamical transition temperature, the relaxation time
diverges algebraically. However, an exponentially growing
relaxation time well described by the Vogel-Fulcher-
Tammann (VFT) law has been observed in experiments
of fragile supercooled liquids. Activated process in finite
dimensions is supposed to wipe out the mean-field dynami-
cal transition. Here, we study temperature dependence of
the relaxation time τα measured as a time when CðtÞ decays
to e−1. Around temperatures where the two-step relaxation
emerges, the relaxation time shows a super-Arrhenius
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FIG. 1. Phase diagram of the model in the plane of temperature
T and type-2 particle density ρ2 with the total density ρ ¼ 0.75.
Crystal3 and Crystal5 stand crystalline phases where a crystal
structure is mainly composed of particles with l1 ¼ 3 and
l2 ¼ 5, respectively. The gas, liquid, crystalline phases are
separated by first-order phase transitions. In the glassy region,
the system shows an aging effect and its autocorrelation function
relaxes in two steps. We study the system with ρ2=ρ ¼ 0.6 in
this work.
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growth with decreasing temperature (see Fig. 3). We find
that the VFT law fits our data at lower temperatures very
well with TVFT=A ¼ 0.177ð6Þ (see also Supplemental
Material [21] for estimation of the dynamical transition
temperature). Note that, as the relaxation time at low
temperature increases with the system size, TVFT would
shift to higher temperature in larger systems [21].
In the RFOT theory, the overlap between independent

replicas has been studied as an order parameter for the
thermodynamic glass transition. The overlap successfully
detects the glass transition in systems without spatial
symmetry [30–33]. The overlap can detect even the slow
dynamics at low temperature through its effective free
energy [16–18]. In our model, however, the overlap and its

distribution function can have no anomaly at any temper-
ature due to its spatial symmetry [34]. The temperature
dependence of the long-time limiting value of the dynami-
cal susceptibility χ4ðt → ∞Þ, equivalent to the spin glass
susceptibility χSG, is indeed almost independent of temper-
ature (see inset of Fig. 2). This is in contrast to a Potts spin
glass model [35] where χSG increases with approaching its
transition temperature [36].
To study rare fluctuations and the effective free energy

of the overlap appropriately, we introduce a field ε in our
model: A system at temperature T is coupled by the field to
a quenched configuration randomly sampled at the same
temperature in equilibrium [16–18]. The field explicitly
breaks the invariance associated with the spatial symmetry,
and thus the overlap can have nontrivial distributions. In the
RFOT theory, the field induces a first-order transition at low
temperature and the transition terminates at a critical point
belonging to the random-field Ising model universality
class [22]. The Franz-Parisi potential reveals the existence
of metastable states at low temperature and allows us to
compute the configurational entropy as a free-energy
difference between two minima [37,38]. Here, we use
the Wang-Landau algorithm [14,15] with the multioverlap
ensemble [39] to compute the density of states ΩTðQÞ as a
function of the overlap Q at a given temperature T with a
fixed reference configuration. The Franz-Parisi potential
VqðQÞ is computed from ΩTðQÞ by averaging over
quenched reference configurations. We prepared reference
configurations by equilibrating the system at each temper-
ature for 108 Monte Carlo sweeps with nonlocal swaps of
particles. The nonlocal swap dynamics is faster with a
factor of ∼102 at low temperature than the local swap
dynamics while the factor slightly depends on temperature
and the system size. The number of reference configura-
tions is 912 for T=A ¼ 0.31 and 0.33, and 48 for higher
temperatures. At high temperature, the potential VqðQÞ is
convex and the overlap ½hQi� as a function of the field ε
grows gradually, see Figs. 4 and 5(c). Here, the brackets h·i
and ½·� represent the thermal and the reference-configuration
averages, respectively. At T=A ¼ 0.33 and 0.31, the Franz-
Parisi potential is slightly nonconvex (see Fig. 4), and the
probability distribution of the overlap ½PqðQÞ� with finite ε
has two separated peaks whereas that at temperature higher
than T=A ¼ 0.35 shows a clear single peak at any ε, see
Figs. 5(a) and 5(b), respectively [40]. We thus conclude that
the coupling field induces a first-order transition into our
model that terminates at a critical point at finite temperature
as in mean-field and particle models in finite dimensions
[17,18,22,41,42] [see Fig. 5(d) for T − ε phase diagram].
When we assume the existence of the thermodynamic

glass transition at TK > 0 for a system with spatial
symmetry, we find the system-size dependence of the
effective transition point εcðLÞ and the configurational
entropy density sconfðLÞ as follows. In the thermodynamic
limit, an infinitesimal coupling field should make them
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FIG. 2. (a) The autocorrelation function of the system. Inset
shows an enlarged view around the plateau region. (b) The
dynamical susceptibility χ4ðtÞ of the system. Inset shows temper-
ature dependence of the peak and the plateau values of χ4ðtÞ
that are denoted as χ�4 and χp4 , respectively. The system size
N ¼ 6000 (L ¼ 20).
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FIG. 3. The Arrhenius plot of the relaxation time τα of the
system with N ¼ 6000 (L ¼ 20). The broken and dotted lines
are the Arrhenius law with ΔE ¼ 4 and the VFT law with
TVFT=A ¼ 0.177, respectively, for guides to the eyes.
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have a finite overlap at T < TK whereas the overlap is
strictly zero when ε ¼ 0 due to spatial symmetry [34]. In
finite systems, the first-order transition at finite field thus
never goes to the expected TK, even in the limit ε → þ0,
while it may approach zero temperature in the limit. At
temperature lower than TK , the effective transition point εc
should scale as εc ¼ OðL−aÞ while at higher temperature

εc − εð∞Þ
c ¼ OðL−aÞ, where εð∞Þ

c ¼ limL→∞ εcðLÞ > 0 and
a > 0, which depends on systems [43,44]. Regarding that
the configurational entropy density sconf measured as the

free energy difference in the Franz-Parisi potential is almost
equivalent to εc, we expect sconf of finite systems to be
finite even below expected TK , but decreases with ∼L−a, as
εcðLÞ does. Studying the finite-size dependence of the first-
order transition line and the configurational entropy would
be a decisive test for the RFOT theory.
To measure the thermodynamic properties at low temper-

ature, we use the nonlocal swap dynamics of randomly
chosen pairs of particles and the exchange Monte Carlo (or
parallel tempering) method [45] to further enhance equili-
bration. We also utilize the multiple-temperature reweight-
ing technique [46–48], which significantly improves the
accuracy of Monte Carlo results. The typical number of
Monte Carlo sweeps for equilibration range from 108 to
1011 per site depending on the system size.
At temperature T=A ≃ 0.6, where the two-step relaxation

emerges, the specific heat is rather smooth, and it starts to
drop without a divergent behavior at lower temperature [see
Fig. 6(a)]. To study further the system-size dependence of
the specific heat, we compute the temperature derivative of
the specific heat ∂c=∂T. We find that ∂c=∂T grows with
increasing the system size, indicating that the drop gets
steeper with the system size. Similar size dependence has
been observed in a mean-field model with RFOT [49] and a
three-dimensional Potts glass model that has a RFOT-like
spin-glass transition [35].
Assuming the hyperscaling relation of the critical expo-

nents dν ¼ 2 − α with d the spatial dimension, we find that
the peak value of ∂c=∂T follows the finite-size scaling
relation

�∂c
∂T

��
∝ Lθ; ð3Þ

with θ ¼ ðαþ 1Þ=ν. We thus can evaluate the two conven-
tional critical exponents from θ as ν ¼ 3=ðθ þ dÞ and
α ¼ 2 − dν ¼ 2–3d=ðθ þ dÞ. If the specific heat does
not diverge but has a finite jump at a thermodynamic glass
transition as in the RFOT theory, the critical exponent
α ¼ 0, suggesting ν ¼ 2=d. The peak value ð∂c=∂TÞ� thus
grows algebraically with exponent θ ¼ 1=ν ¼ d=2. This
provides a useful way for studying thermodynamic
anomaly with a finite-size scaling analysis even when an
order parameter is unknown. Here, in our model, the
exponent θ ¼ 1.44ð2Þ (see inset of Fig. 6(b)), implying
ν ¼ 0.68ð1Þ and α ¼ −0.03ð1Þ, marginally compatible
with the RFOT theory.
In summary, we proposed a lattice glass model that is

very stable against crystallization and shows the typical
dynamics observed in fragile supercooled liquids at low
temperature. Our numerical results show that a glass
transition is detected by a singularity of the temperature
derivative of the specific heat with exponents compatible
with the RFOT theory. We also numerically computed the
quenched version of the Franz-Parisi potential using the
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Wang-Landau algorithm. The potential shows very large
overlap fluctuations at low temperature, and a first-order
transition was found in the coupled system that terminates
at a critical point. The large overlap fluctuations strongly
suggest that low-temperature glassy dynamics emerge from
thermodynamics of the system, similar to the mean-field
models with the RFOT. We thus conclude that our model is
useful to study and further examine the mean-field RFOT
predictions. Thanks to the lattice nature of our model, it is
easy to study its mean-field solution using the cavity
method and compare it with our results. To determine
precisely the phase diagram both in mean-field and finite
dimensions will constitute a crucial test of the validity of
the theory.
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