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The tennis racket effect is a geometric phenomenon which occurs in a free rotation of a three-
dimensional rigid body. In a complex phase space, we show that this effect originates from a pole of a
Riemann surface and can be viewed as a result of the Picard-Lefschetz formula. We prove that a perfect
twist of the racket is achieved in the limit of an ideal asymmetric object. We give upper and lower bounds to
the twist defect for any rigid body, which reveals the robustness of the effect. A similar approach describes
the Dzhanibekov effect in which a wing nut, spinning around its central axis, suddenly makes a half-turn
flip around a perpendicular axis and the monster flip, an almost impossible skateboard trick.
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Consider an experiment that every tennis player has
already made. The tennis racket is held by the handle and
thrown in the air so that the handle makes a full turn before
catching it. Assume that the two faces of the head can be
distinguished. It is then observed, once the racket is caught,
that the two faces have been exchanged. The racket did not
perform a simple rotation around its axis, but also an extra
half-turn. This twist is called the tennis racket effect (TRE).
An intuitive understanding of TRE is given in Ref. [1]. Itis
also known as the Dzhanibekov’s effect (DE), named after
the Russian cosmonaut who made a similar experiment in
1985 with a wing nut in zero gravity [2,3]. The wing nut
spins rapidly around its central axis and flips suddenly after
many rotations around a perpendicular axis [3]. The
monster flip effect (MFE) is a freestyle skateboard trick.
It consists in jumping with the skateboard and making it
turn around its transverse axis with the wheels falling back
to the ground. This trick is very difficult to execute since
TRE predicts precisely the opposite, turning about this axis
should produce a 7 flip and the wheels should end up in the
air. The video in Ref. [4] shows that this trick can be made
with success after several attempts.

We propose in this Letter to describe these phenomena.
The results are established for a tennis racket and then
extended to the two other systems. The motion is modeled
as a free rotation of an asymmetric rigid body, which has
three different moments of inertia along its three inertia
axes [5]. The axes with the smallest and largest moments of
inertia are stable, while the intermediate one is unstable. It
is precisely this instability which is at the origin of TRE [6].
A more detailed description can be obtained from Euler’s
equations. The three-dimensional rotation is an example of
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Hamiltonian integrable systems [7] in which the trajectories
can be expressed analytically. The dynamics of the rigid
body in the space-fixed frame are given by elliptic integrals
of the first and third kinds, which lead to a very accurate
description of TRE [6,8,9]. However, this analysis does not
reveal its geometric character. A geometric point of view
provides valuable physical insights, in particular with
respect to the robustness of the corresponding physical
phenomenon. Different geometric structures have been
studied recently in the context of mechanical systems with
a small number of degrees of freedom. Among others, we
can mention the Berry phase [10], Hamiltonian mono-
dromy [11-13], singular tori [14], and the Chern number
[15], which found applications in classical and quantum
physics. In this Letter, we show that the geometric origin of
TRE is a pole of a Riemann surface defined in a complex
phase space. This effect can be interpreted as the result of
the Picard-Lefschetz formula which describes the possible
deformation of an integration contour in a complex space
after pushing it around a singular fiber [16,17]. The
geometric character of DE and MFE can also be deduced
from this approach and helps understanding in which
conditions they can be realized. Note that similar complex
methods have been used to describe Hamiltonian mono-
dromy [18-20].

The position of the body-fixed frame (x,y,z) with
respect to the space-fixed frame (X, Y, Z) defines the free
rotation of a rigid body [2,5,7]. Three Euler angles (6, ¢, )
characterize the relative motion of the body-fixed frame.
The angle 6 is the angle between the axis z and the space-
fixed axis Z. The rotation of the body about the axes Z and
7 is, respectively, described by the angles ¢ and y (see
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FIG. 1. A tennis racket with the three inertia axes (x, y, z). The
angles ¢ and y used to define TRE describe, respectively, the
rotation of the body around the y and z axes. TRE is a
phenomenon in which a full turn in ¢ direction produces an
almost perfect half-turn in y direction.

Supplemental Material, Sec. II [21]). The moments of
inertia I, I, and I are the elements of the diagonal inertia
matrix in the body-fixed frame, with the convention
I, <1, <I,. As displayed in Fig. 1, a tennis racket is a
standard example of an asymmetric rigid body in which the
z axis is along the handle of the racket, y lies in the plane of
the head of the racket, and x is orthogonal to the head (see
Supplemental Material, Sec. I [21]). TRE consists in a 2z
rotation of the body around the y axis. The precession of the
handle is measured by the angle ¢». TRE then manifests by a
twist of the head about the z axis, i.e., by a variation
Ay = n, along a trajectory such that A¢ = 27z [9].

Tennis racket effect.—TRE is a geometric phenomenon
which does not depend on time. From Euler’s equation, it
can be described by the evolution of y with respect to ¢
(see Supplemental Material, Sec. II [21]):

\V/(a + beos?y)(c + beos?y)

d
s RS
1 — bcos?yr

dp

; (1)

where we introduce the parameters a = (I,/I.) -1,
b=1-(I,/1,), and ¢ = (2I,H/J?*) -1, with the con-
straints —b<c<a, a>0, and O <b < 1. H and J
denote, respectively, the rotational Hamiltonian and the
angular momentum of the rigid body defined in
Supplemental Material, Sec. II [5,21]. In the limit of a
perfect asymmetric body, I, < I, < I,, we deduce that
b — 1 and a — +o0. We consider only the positive values
of dy/d¢ defined in Eq. (1); the same analysis can be done
for the negative sign. Equation (1) defines a two-dimen-
sional reduced phase space with respect to y and dy/d¢, as
displayed in Fig. 2. Note the similarity of this phase space
with the one of a planar pendulum, except that two
consecutive unstable fixed points are separated by 7 instead
of 2z. The separatrix for which ¢ =0 is the trajectory
connecting these points [5]. We extend below the study to

=

dy/de
o
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FIG. 2. Reduced phase space describing the dynamics of the
rigid body in the space (w, dy/d¢). The black and blue (dark
gray) lines depict, respectively, the rotating and oscillating
trajectories of the angular momentum. The solid red line (light
gray) represents the separatrix. The parameters a and b are set,
respectively, to 12 and 0.05.

the complex domain and continue analytically all the
functions.

TRE is associated with a trajectory for which Ay ~ 7z
when A¢ = 2x. We denote by y and y, the initial and
final values of the angle y. To simplify the study of TRE,
we consider a symmetric configuration for which y, =
-n/2+e€ and y;=n/2—e. A perfect TRE is thus
achieved in the limit ¢ — 0. Note that this symmetry
hypothesis is not restrictive, as shown numerically in
Supplemental Material, Sec. VI [21]. Using Eq. (1), we
obtain that the variation of ¢ is given by

/2-¢ 1 — beos?y

dy
—z/2+e /(@ + bcos?y)(c + bcosy)

Ap = (2)

For oscillating trajectories, the condition ¢ + b cos®y > 0
leads to sin?e > |c/b|. From the parity of the integral and
the change of variables x = cos” , A¢ can be expressed as

an incomplete elliptic integral, Ag(e) = [:, , with

1 1->
®=-— * dx, (3)

b/x(x=p)(1 - x)(x - a)

where a=—-a/b and f = —c/b. As explained in
Supplemental Material, Sec. III [21], we introduce a function
M definedby M(uy) = 21In(1 +v/2)]/[/T = ] + 21n(2)
for uy €]0, 1[,and m = M(1/2) ~3.879. A precise descrip-
tion of TRE is given by Theorem 1, which is the main result
of this study. Note that the statement is true slightly more
generally for any value u, €]0, 1, by replacing everywhere
m by M(ug). We put uy = 1/2 in Theorem 1 for simplicity.
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Theorem [.—For all ¢ such that
lc| < bexp(—2zvab —m),

for ab large enough, the equation

A¢’)a,b,c (6) =2r

has a unique solution eg(a, b, ¢) which verifies

arcsin [1 /1 %| < €g < arcsin [exp (—7: ab —%)} (4)

This leads to

lim eg(a,b,c)=0.

ab—>+o

Several questions about its existence, uniqueness, and
robustness are raised by the observation of TRE; all find
a rigorous answer in Theorem 1. A first fundamental
comment concerns a perfect TRE which occurs only in
the limit of a very asymmetric body. Such limits are
common enough in physics to reveal specific phenomena.
An example is given by the adiabatic evolution in mechan-
ics [7] which is also based mathematically on an asymptotic
analysis. The main statement of Theorem 1 describes the
asymptotic behavior of the twist defect which approxi-

mately evolves as € ~ e~V4P2%/2 for a sufficiently asym-
metric body (with ab > 1). This exponential evolution is
connected to the instability of the fixed points and to the
presence of a pole in a complex phase space. The existence
of a unique symmetric configuration realizing TRE follows
from this asymptotic analysis. The corresponding trajectory
is closer and closer to the separatrix for more asymmetric
body (i.e., ¢ goes to 0). Theorem 1 also establishes the
robustness of TRE with respect to the shape of the body.
Lower and upper bounds to the twist defect are given by
Eq. (4) as a function of the different parameters.

These results have a geometric origin in the complex
domain. We study the solution € of A¢, ;, .(€) = 2z, where
Ap = A¢, . 1s given by Eq. (2). The origin of TRE is
revealed by a complexification of the problem in which A¢
can be interpreted as an Abelian integral over the Riemann
surface of the form @ [17]. As displayed in Fig. 3, this
surface has two sheets with four branch points in x =0, 1,
p, and a. Branch cuts are introduced to define a single-
valued function. In the limit ¢ — 0, the two branch points
x = 0 and x = f coincide, leading to a pole whose integral
is the logarithmic function. For large values of a, note that
there is no confluence of the branch point x = a with x = j
or 0.

FIG. 3. Riemann surface of the form @ with the four branch
points (black dots) in x = a, f#, 0, and 1 (from bottom to top).
When ¢ — 0, the two points x = f and x = 0 coincide and give
birth to a pole. The top and bottom panels represent the cases
where the TRE can or cannot be observed. The solid straight lines
represent the branch cuts of the surface. The cycles & and & are
depicted by solid red (dark gray) lines. The form w is integrated
along the path y between the point u (black cross) and the
ramification point x = 1 (green or light gray solid line).

Let F be the function defined by

1
s = [0= [0
u 14

where y is the integration path with 0 < u < 1. We have
Adype(€) = F,p(sin? €). The multivalued character of
F,p,. is different for u < |f| and u > |f|. In the case
|B| < u < 1, we consider in the upper sheet of the Riemann
surface the cycle 6 passing by x = u and encircling the two
branch points f and 0, as displayed in Fig. 3. By the Picard-
Lefschetz formula [16,17], the integration contour y is
deformed to itself plus 6 when the point x = u performs a
loop along 8. The integral [; @ adds to F, ;, ., which reveals
the multivalued character of F, ;, . as a complex function. A
single-valued function can be obtained by adding a
convenient multiple of Inu = — [!(dx/x), the factor being
given by (1/27i) [;w. In the limit ¢ — 0, w has a pole in
x =0 and this integral can be computed from a residue
formula.
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We present a heuristic proof of Theorem 1, while a
rigorous demonstration is provided in Supplemental
Material, Sec. III [21]. We consider a simplified version
of the problem where only two branch points are accounted
for. We have

/‘v;;j_dr—ﬂnvﬁ__+¢_hu

Using the pole at
(1/2xi) [5;(dx/x) =1 and

)_ﬂdx:m(L w“ﬁ)

[ = i

which is a well-defined and bounded function of u for
|B| < u < 1. As shown in Supplemental Material, Sec. III
[21], this argument can be generalized to F',;, ., which can
be expressed as

infinity, we deduce that

1
vab

where h, ;, . is an analytic and bounded function in |||, ug[
with 0 < uy < 1. The bound of A, . is the function M
introduced in Theorem 1. For ab large enough, the equation
F,pc(u) =2m has a unique solution which proves
Theorem 1. In the second region in which u < ||, the
geometric situation is completely different, as can be seen
in Fig. 3. The cycle & encircles only the branch point x = 0
and no pole occurs when ¢ — 0. Turning twice around x =
0 to get a closed path, we obtain ffs @ = 0. This result stems
from integrating the complex function x — 1//x along 5.
The function F,, . is bounded with no logarithmic diver-
gence. No information is gained about the existence, the
uniqueness, and the value of ¢, i.e., the possibility to
realize TRE.

Dzhanibekov effect.—A similar analysis can be used to
describe DE [3]. As represented in Supplemental Material,
Sec. I, the z- and x-inertia axes of this rigid body are,
respectively, along the wings and orthogonal to the wings,
while the y-inertia axis corresponds to the central axis of
the rotation [21]. The video in Ref. [3] clearly shows that
the motion of the wing nut is first guided by a screw which
induces an almost perfect rotation around the central axis.
In terms of Euler’s angles, this leads to a very large angular

Fa,b.c(u) =

ha,b.c (u) -

velocity ¢ and a speed yr approximatively equal to O (i.e.,
dy/d¢ ~ 0). Since the device generating the rotation of the
rigid body blocks the flip motion, the angle y is initially of
the order of +7/2. We deduce that the initial point of the
dynamics is very close to one of the unstable fixed points
represented in Fig. 2, with a parameter ¢ ~ 0. Using Eq. (1),
DE is described by

/2 1 — beos?y

Ap = d
/ —2/2 \/ (a + bcos?y)(c + bcos?y) 4

with ¢ > 0, where A¢ represents the angle increment
before the flip of the system. We assume that the wing
nut performs a perfect twist for which y goes from —z/2 to
—r/2. We show in Supplemental Material, Sec. IV [21],
that

1
Vab

where h,, 5, is a bounded function when ¢ — 0. In this limit,
the logarithmic divergence of A¢ occurs with the con-
fluence of the two branch points in x = f and x = 0, which
gives a pole as in TRE. Consequently, the speed d¢/dy
increases tremendously in the neighborhood of this point.
Note that the parameter ¢ for DE plays the same role as ¢
for TRE, as can be seen in Egs. (5) and (6). DE with many
rotations around the intermediate axis can be observed for a
sufficient small positive value of c¢. We stress that the
number of turns does not need to be complete.

Monster flip.—This approach can be used for a skate-
board where the z- and y-inertia axes are, respectively,
orthogonal and parallel to the wheel axis, while the x axis is
orthogonal to the board (see Supplemental Material, Sec. I
[21]). MFE corresponds to a complete turn around the
transverse axis together with a small variation of . It can
be realized in a neighborhood of the unstable point where
dy/d¢ =0 (i.e., dp/dy = o). We search for a solution ¢
close to zero of Ag(e) = 2z, where

Ap = [7a.5(c) = In(c)], (6)

7/2+e 1 — beos*y

Ap(e) =2
(€) i Va + beos?y /¢ + beosty

dy, (7)

with w; = 7/2 and y; = n/2 + arcsin[\/|f]|] for rotating
and oscillating trajectories, respectively. As in TRE, we
get Ag(e) = f:(‘)z;;/ ®, where @ is defined by Eq. (3).

Introducing Fa,b,c( u)= [", , it can be shown in the

cos* y;

region || < u < 1 that (see Supplemental Material, Sec. V
[21])

- 1 -

Funelt) == upu) + %a_blnw

where iza’b’(/, is a bounded and single-valued function. Note
the change of sign in front of the logarithmic term with
respect to Eq. (5). The solution of A¢,, ;, . = F,, (1) canbe
approximated as € ~ (\/L-B—| / 2)6”‘/E. The accuracy of this
approximation is shown numerically in Supplemental
Material, Sec. VI [21]. For a body with ab > 1, MFE can
be observed only in a neighborhood of the separatrix where
|A| < 1. The rotation of the skateboard around its transverse
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axis is constrained by the condition € > \/W . This result
quantifies the difficulty of performing MFE. For an angle € of
30°, this leads for a standard skateboard to ¢ ~ 1073, while
the maximum value of ¢ is of the order of 10. Finally, as
illustrated in Supplemental Material, Sec. V, MFE cannot be
realized in the second region u < |j| [21].

Conclusion.—TRE originates from a pole of a Riemann
surface and a perfect twist of the head of the racket occurs
in the limit of an ideal asymmetric body. Different proper-
ties such as the robustness of the effect have been derived
from this geometric analysis. As a by-product, we have
described DE and established why the MFE is so difficult to
perform. This study paves the way for the analysis of other
classical integrable systems and strongly suggests the
importance of complex geometry beyond the cases studied
in this Letter. An intriguing question is to transpose this
effect to the quantum world. Different molecular systems
could show traces of this effect [22,23]. Another field of
application is the control of quantum systems by external
electromagnetic fields [24] using, e.g., the analogy between
Bloch and Euler equations [25].
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