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In open quantum systems, a clear distinction between work and heat is often challenging, and extending
the quantum Jarzynski equality to systems evolving under general quantum channels beyond unitality
remains an open problem in quantum thermodynamics. In this Letter, we introduce well-defined notions of
guessed quantum heat and guessed quantum work, by exploiting the one-time measurement scheme, which
only requires an initial energy measurement on the system alone. We derive a modified quantum Jarzynski
equality and the principle of maximum work with respect to the guessed quantum work, which requires the
knowledge of the system only. We further show the significance of guessed quantum heat and work by
linking them to the problem of quantum hypothesis testing.
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Introduction.—Understanding the laws of thermo-
dynamics at the most fundamental level requires clarifying
the thermodynamic properties of quantum systems, and
especially the contributions of coherence and correlations
in the concept of work and heat are of fundamental interest
[1–6]. In quantum microscopic systems, fluctuations are
inevitable; therefore, the laws of thermodynamics have to
be given by taking into account the effects of these quantum
fluctuations. A powerful insight into fluctuations is
provided by Jarzynski equality [7], one of the few equalities
in thermodynamics, which relates the fluctuating work in a
finite-time, nonequilibrium process with the equilibrium
free energy difference:

he−βWi ¼ e−βΔF: ð1Þ
Here β ¼ 1=T is the inverse temperature (we set the
Boltzmann constant kB ¼ 1), W is the work, and ΔFS is
the equilibrium free energy difference defined by the initial,
HSð0Þ, and final Hamiltonian, HSðtÞ. The equality is
independent of process details: the final state of the process
does not have to be thermal, and the temperature could
change. Jarzynski equality can be also regarded as the
generalization of the second law of thermodynamics, since
through Jensen’s inequality it yields the principle of
maximum work: hWi ≥ ΔF.
The quantum version of the Jarzynski equality—the

quantum Jarzynski equality—was developed by focusing
on closed quantum systems in the two-time measurement
scheme [8,9], which defines the work as the energy
difference between the initial and final energy projection
measurements in a single trajectory. Jarzynski equality has

been later extended to open quantum systems subject to
dephasing process [10], unital maps [11], random projec-
tion measurements [12,13], or feedback control [14,15]; it
has been verified experimentally in numerous systems,
such as biomolecular systems [16], trapped ions [17,18],
NV centers [19], and NMR systems [20].
Despite this progress, a general formulation of the

quantum Jarzynski equality for arbitrary open quantum
systems is still lacking. This stems from the fundamental
challenge that work and heat are not direct observables in
quantum mechanics [21]: while in closed systems work can
be simply identified with energy variations, in open
quantum systems a clear distinction between work and
heat is not always possible [22]. While some insight can be
gained by theoretically assuming knowledge of the bath
state [23–27], in practice the bath cannot be measured. One
solution is to assume that a particular process does not
involve heat exchange. For example, by assuming heat
exchange to be absent in the dephasing process because
there is no population decay, one can prove that the
quantum Jarzynski equality has the standard form in
Eq. (1) [10,17]. Similar results [11] hold for unital maps
(that is, identity-preserving maps), which describe only
processes that can be microscopically reversed by monito-
ring the bath with feedback [28,29].
There have been several efforts to extend the quantum

Jarzynski equality to nonunital maps [30–35] by using the
two-time measurement scheme. However, this either
requires a measurement on the bath [36], or it faces a
fundamental issue [37] related to the loss of coherence in
energy measurements. In open quantum system, the second
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energy measurement on the system unavoidably destroys
system-bath correlations, making it impossible to disti-
nguish work and heat by energy measurements on the
system alone, except for unitary or unital evolutions. In
addition, the two-time measurement scheme neglects the
information contribution due to the backaction of the second
measurement [38]. To improve on the results obtained by the
two-point measurement scheme, recent works have used
dynamic Bayesian networks [39] and Maggenau-Hill qua-
siprobability [40], or, for closed quantum systems, avoided
completely the second measurement [38,41].
In this Letter, we overcome these issues by introducing a

novel definition of guessed quantum heat and work for
general quantum channels, which lead to a quantum
Jarzynski equality that takes into account system-bath
correlations. We employ the one-time measurement scheme
developed in Ref. [38] for closed quantum systems. This
protocol only requires us to measure the initial energy of
the system (which is initially decoupled from the thermal
bath) and to evaluate the expectation value of the difference
between final and initial energy of the system by intro-
ducing the concept of “best possible guess” of the final state
[38]. Avoiding the final projective measurement of the
energy provides a more precise description of the thermo-
dynamic process than the traditional two-time measure-
ment scheme, since it avoids the backaction by the second
measurement and the ensuing information loss [38]. This
protocol yields a modified quantum Jarzynski equality in
terms of the information free energy [38,42–45], and a
tighter bound on the second law of thermodynamics.
Our main result is based on a generalization of the results

in Ref. [38] to general quantum channels for open quantum
systems in contact with a thermal bath. Inspired by the one-
time measurement scheme, we introduce well-defined
notions of guessed quantum heat and guessed quantum
work that only require measurements on the system. With
these quantities, we can derive a modified quantum
Jarzynski equality (see Theorem 1) and further update
the principle of maximum work (Corollary 1). Specifically,
the bound in the principle of maximum work requires
knowledge of the system alone. Not only the guessed
quantum heat and work provide insights into the dynamics
of general open quantum systems, as we show with several
examples [46], but they acquire further operational mean-
ings from their relationship to quantum hypothesis testing.
One-time measurement scheme.—We consider a

composite system comprising the target system ðHSÞ and
the bath ðHBÞ, and assume we can only measure the system.
Let HSðtÞ be the system Hamiltonian, which is time depen-
dent, and HB the time-independent bath Hamiltonian. The
total Hamiltonian, HtotðtÞ¼HSðtÞ⊗1Bþ1S⊗HBþVðtÞ,
includes an interaction, VðtÞ, between system and bath
[we assume VðtÞ ¼ 0 for t ≤ 0].
The initial state of the composite system is the product

τSð0Þ ⊗ τB of thermal Gibbs states at t ¼ 0 for system and

bath, τSðtÞ ¼ e−βHSðtÞ=ZSðtÞ and τB ¼ e−βHB=ZB. Here,
ZAðtÞ are the partition functions, ZAðtÞ ¼ Tr½e−βHAðtÞ� for
A ¼ S, B. The composite system evolves under a unitary
operator Ut as Ut½τSð0Þ ⊗ τB�U†

t which satisfies the usual
Schrödinger’s equation ∂tUt ¼ −iHtotðtÞUt [we set Plank
constant ℏ ¼ 1].
At time t ¼ 0, we measure the energy of the system

alone. Suppose that we obtain a value ϵ, corresponding
to one of the eigenvalues of HSð0Þ, with probability
e−βϵ=ZSð0Þ. Then, the postmeasurement state of the system
is the corresponding eigenstate: jϵihϵj. Therefore, the
evolved state of the system after the measurement is

ΦtðjϵihϵjÞ≡ TrB½Utðjϵihϵj ⊗ τBÞU†
t �;

where Φt is a completely positive trace-preserving map in
HS. This evolution includes contributions from heat
exchange, because of the system coupling to the thermal
bath, and from work due to the time dependence of the
system Hamiltonian and to system-bath interaction, which
exists even for time-independent Hamiltonians. It is how-
ever difficult to distinguish the two contributions, and,
indeed, a measurement on the system alone would not be
fully informative.
After the evolution, we assume that we do not perform a

final measurement, but still estimate the energy difference
along a certain realization trajectory, ΔẼðϵÞ, from the
expectation value of the system Hamiltonian HSðtÞ with
respect to ΦtðjϵihϵjÞ:

ΔẼðϵÞ ¼ Tr½HSðtÞΦtðjϵihϵjÞ� − ϵ:

The probability distribution of the internal energy differ-
ence is given by

P̃ðΔEÞ ¼
X

ϵ

e−βϵ

ZSð0Þ
δ½ΔE − ΔẼðϵÞ�:

This is a good definition because it yields the correct
expectation value of the internal energy difference hΔEi.
Indeed, denoting with h� � �iP̃ the average with respect to the
distribution P̃, we have

hΔEiP̃ ¼
Z

P̃ðΔEÞΔEdðΔEÞ;

¼ TrfHSðtÞΦt½τSð0Þ�g − Tr½HSð0ÞτSð0Þ�;
≡ hΔEi: ð2Þ

By using P̃ðΔEÞ, we can calculate the averaged expo-
nentiated internal energy difference:

he−βΔEiP̃ ¼
Z

P̃ðΔEÞe−βΔEdðΔEÞ

¼ 1

ZSð0Þ
X

ϵ

e−βTr½HSðtÞΦtðjϵihϵjÞ�:
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We can interpret this expression by introducing a new
partition function

Z̃SðtÞ≡
X

ϵ

e−βTr½HSðtÞΦtðjϵihϵjÞ�;

yielding

he−βΔEiP̃ ¼ Z̃SðtÞ
ZSð0Þ

¼ e−βΔF̃S ; ð3Þ

where ΔF̃S ¼ F̃SðtÞ − FSð0Þ is the difference between
the initial, thermal equilibrium free energy, FSð0Þ ¼
−β−1 lnZSð0Þ, and the equilibrium free energy correspond-
ing to Z̃SðtÞ, F̃SðtÞ ¼ −β−1 ln Z̃SðtÞ. We note that this
relation has the form of a typical Jarzynski equality, linking
the energy fluctuation to the free energy; however, to
give this relation a physical meaning we need to further
investigate the significance of F̃SðtÞ by linking this quantity
to an effective state.
Guessed quantum heat and guessed quantum work.—

Following Ref. [38], we introduce the best possible guess
for the final system state. This thermal state, ΘSBðtÞ, can
be found by maximizing the system-bath Von-Neumann
entropy SSBðtÞ ¼ −Tr½ΘSBðtÞ lnΘSBðtÞ� under the con-
straint of a fixed, average energy for the system alone,
time-evolved after the one-time projective measurement. In
other words, we apply the principle of maximum entropy
[47] to find the state with minimum information content,
under the given constraints. The best possible guessed state
can be given by

ΘSBðtÞ ¼
X

ϵ

pðϵÞUtðjϵihϵj ⊗ τBÞU†
t ;

where the probabilities,

pðϵÞ ¼ e−βTr½HSðtÞΦtðjϵihϵjÞ�

Z̃SðtÞ
;

are found from entropy maximization under the constraint
ES ¼ Trf½HSðtÞ ⊗ 1B�ΘSBðtÞg and that the postmeasure-
ment state of the composite system after the initial energy
measurement is given by jϵihϵj ⊗ τB, before evolving
under Ut (see [46]).
We note that here we assumed an isothermal process for

the composite system, as expected for a closed quantum
system. Then, ΘSBðtÞ can be seen as a thermal state at the
initial temperature β, even if it is not the thermal state of the
composite systemat time t, τSðtÞ ⊗ τB. The difference can be
quantified by their relative entropyD½ΘSBðtÞkτSðtÞ ⊗ τB�≡
Tr½ΘSBðtÞ lnΘSBðtÞ� − TrfΘSBðtÞ ln½τSðtÞ ⊗ τB�g. The rela-
tive entropy helps clarifying not only the thermodynamic
contribution from the information difference of the states,
but also an operational meaning of our results in terms of
quantum hypothesis testing. By defining

hQ̃iB ≡ Tr½HBτB� − Tr½ð1S ⊗ HBÞΘSBðtÞ�;

we write D as [46]

D½ΘSBðtÞkτSðtÞ ⊗ τB� ¼ − ln
Z̃SðtÞ
ZSðtÞ

− βhQ̃iB: ð4Þ

Since hQ̃iB represents the thermal bath energy loss, we can
identify it as a kind of heat [48], that we call “guessed
quantum heat” as it arises from the definition of the best
possible guessed stateΘSBðtÞ.We can similarly introduce the
notion of “guessed quantumwork” W̃, based on the first law
of thermodynamics:

W̃ ≡ ΔE − hQ̃iB: ð5Þ
Then we can obtain the following theorem:
Theorem 1.—The quantum Jarzynski equality for the

guessed quantum work is

he−βW̃iP̃ ¼ e−βΔFSe−D½ΘSBðtÞkτSðtÞ⊗τB�: ð6Þ
Proof.—From the definition of the equilibrium free

energy, FSðtÞ¼β−1 lnZSðtÞ, we can write F̃SðtÞ−FSðtÞ¼
hQ̃iBþβ−1D½ΘSBðtÞkτSðtÞ⊗τB�. Defining ΔFS ¼ FSðtÞ−
FSð0Þ, we have

ΔF̃S ¼ ΔFS þ hQ̃iB þ β−1D½ΘSBðtÞkτSðtÞ ⊗ τB�;

and substituting into Eq. (3), we obtain

he−βΔEiP̃ ¼ e−βΔFSe−βhQ̃iBe−D½ΘSBðtÞkτSðtÞ⊗τB�; ð7Þ
which yields Eq. (6) using the definition of guessed
quantum work in Eq. (5).
Note that F̃SðtÞ plays the role of an information free

energy [38,42–45] computed with respect to the best
possible guessed state ΘSBðtÞ.
We verify Eq. (7) by considering several simple models

in [46]. We first discuss time-independent two-qubit
interacting model, such as two-qubit dephasing. This model
can be realized experimentally in two-qubit systems, such
as nitrogen-vacancy (NV) centers in diamond [49], where
HS and HB are the truncated electronic spin system and
nuclear spin system associated with the NV center. We also
consider an archetypal model of dephasing, the spin-boson
model [50] without time dependence. In particular, by not
assuming a priori that dephasing precludes heat exchange,
we find that we can define guessed quantum heat for
dephasing maps, and thus guessed quantum work contains
not only contributions from the Hamiltonian time depend-
ence, but also from the interaction of system and bath.
From Theorem 1, we obtain the following corollary:
Corollary.—principle of maximum guessed quantum

work.—The average of the guessed quantum work satisfies
the following inequality:
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hW̃i ≥ ΔFS þ β−1D½ρ̃SðtÞkτSðtÞ�; ð8Þ

where ρ̃SðtÞ≡ TrB½ΘSBðtÞ�.
Proof.—Applying Jensen’s inequality to Eq. (7), and

using the equivalence in Eq. (2), from Eq. (5), we obtain

hW̃i ≥ ΔFS þ β−1D½ΘSBðtÞkτSðtÞ ⊗ τB�: ð9Þ

The monotonicity of the quantum relative entropy [51] with
respect to the partial trace leads to Eq. (8) via

D½ΘSBðtÞkτSðtÞ ⊗ τB� ≥ DfTrB½ΘSBðtÞ�kτSðtÞg:

Discussion.—The emergence of the guessed quantum
heat and work can be understood as the results of system-
bath correlations deriving from their interaction. As the
one-time measurement does not erase such correlations, in
contrast to the two-time measurement protocol, we are able
to define and distinguish heat and work (their “guessed”
values), which are derived from the well-defined guessed
state, even in cases such as dephasing where the two-time
measurement protocol predicts no heat exchange.
Still, our results are consistent with well-known results

for closed quantum systems. Since Eqs. (6) and (8) are
generalizations of results in Ref. [38], we can recover the
closed quantum system scenario by setting VðtÞ ¼ 0. Then
there is no energy exchange with the bath, i.e., no heat, and
the guessed quantum work is simply the exact quantum
work, given by the energy difference, hW̃iP̃¼hWi¼hΔEi.
Also, for the pure dephasing process, the guessed quantum
work coincides with the exact work, as we can see from
examples in [46].
In contrast, for open quantum systems Eqs. (6) and (9)

introduce an additional thermodynamic contribution to the
work capacity, given by the information difference between
thermal and guessed state [38], as quantified by the relative
entropy. More precisely, the contribution arises from the
difference between the product thermal state τSðtÞ ⊗ τB
and the system-bath correlated state ΘSBðtÞ. This implies
that system-bath correlations can increase the work capac-
ity of the system.
We indeed obtain a bound for the principle of maximum

guessed quantum work that importantly only requires
knowledge of the system’s state [Eq. (8)]. Avoiding
measurements on the bath is essential, as this bound
describes the maximum usable and extractable energy that
the system can provide, which is of relevance for experi-
ments and practical applications.
To this goal, we were able to exploit the concept of

“guessed state” not only to isolate the contribution from the
measurement on the system, as done previously, but also to
analyze the more realistic situation where the bath is
unmeasurable. In this scenario, then, ΘSBðtÞ is a good
effective state, because it can not only be estimated but it
also gives a bound to the guessed quantum work, and

similarly guessed quantum heat and work assume a well-
defined meaning.
Finally, we note that Eq. (6) has operational meaning

associated with the scaling of the quantum hypothesis
testing from the quantum Stein’s lemma [52,53]. The
quantum relative entropy D½ΘSBðtÞkτSðtÞ ⊗ τB� quantifies
the distance between the guessed state ΘSBðtÞ and the
product Gibbs’s state defined by the initial temperature and
the final Hamiltonians of the system and bath τSðtÞ ⊗ τB.
This is associated with the type-II error probability that the
observation indicates the state to be ΘSBðtÞ when the real
state was τSðtÞ ⊗ τB (see [46] for details).
Assume that we prepare n independent and identically

distributed copies of ΘSBðtÞ and τSðtÞ ⊗ τB. Here, ΘSBðtÞ
and τSðtÞ ⊗ τB are seen as the null and alternative hypoth-
esis, respectively. Let us define Bn as the minimum type-II
error probability in quantum Stein’s lemma that the true
state is ½τSðtÞ ⊗ τB�⊗n while the inferred state is Θ⊗n

SB ðtÞ.
Then, in the limit of large n, we have

lim
n→∞

1

n
lnðBnÞ ¼ −D½ΘSBðtÞkτSðtÞ ⊗ τB�: ð10Þ

Relating the guessed quantum work W̃ [see Eq. (6)] with
the type-II probability Bn,

he−βðW̃−ΔFSÞiP̃ ¼ lim
n→∞

ðBnÞ1n; ð11Þ

we can show that the guessed quantum work is asymp-
totically associated with the scaling of the quantum
hypothesis testing when the true state is τSðtÞ ⊗ τB while
the experimental result indicates ΘSBðtÞ.
In conclusion, we employ the one-time measurement

scheme to derive a modified quantum Jarzynski equality
and the principle of maximum quantum work in open
quantum systems described by general quantum channels.
We demonstrate that the one-point measurement scheme
enables defining heat and work with respect to the best
possible guessed state, by introducing well-defined con-
cepts of guessed quantum heat and guessed quantum work.
Our work generalizes the results obtained in Ref. [38] for
closed quantum systems, where guessed quantum work
coincides with the exact quantum work. The extension to
open quantum systems provides novel insights to the
thermodynamics of both unital and generic quantum
channels,by elucidating the role of correlations between
system and bath in producing work and heat exchange, as
we illustrate in various examples in the Supplemental
Material [46]. Finally, we also have shown the operational
meaning of guessed quantum work in terms of quantum
hypothesis testing. We expect that our results will contrib-
ute to a deeper understanding and further exploration of the
role of work and heat in open quantum systems, as well as
quantum fluctuation theorems for general open quantum
systems.
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