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We present a general method for approximately contracting tensor networks with an arbitrary
connectivity. This enables us to release the computational power of tensor networks to wide use in

inference and learning problems defined on general graphs. We show applications of our algorithm in
graphical models, specifically on estimating free energy of spin glasses defined on various of graphs, where
our method largely outperforms existing algorithms, including the mean-field methods and the recently

proposed neural-network-based methods. We further apply our method to the simulation of random
quantum circuits and demonstrate that, with a trade-off of negligible truncation errors, our method is able to
simulate large quantum circuits that are out of reach of the state-of-the-art simulation methods.
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As a powerful method to alleviate the “curse of
dimensionality” in high-dimensional modeling and data
analysis, the tensor networks find wide applications in
many areas of science and technology. In quantum many-
body physics, tensor networks on lattices, including the
matrix product states (MPS) [1,2] and the projected
entangled pair states (PEPS) [3], have great success in
the study of strongly correlated systems; in statistical
mechanics, calculation of the partition function can be
naturally converted to a tensor network contraction
problem [4]; in computer science, the number of solutions
of constraint satisfaction problems can be computed via
tensor networks [5]; in data science, tensor networks and
tensor decompositions are important tools for data com-
pression and dimensionality reduction [6]. Recently,
tensor network methods have been successfully extended
to machine learning, in compressing a neural network [7],
giving an efficient image classifier [8] and working as
generative models in unsupervised learning [9,10].

Despite its wide use, however, the capability of the
tensor networks is so far limited to either small-
dimensional systems, where the exact contraction is trac-
table, or high-dimensional systems only on regular lattices
with local interactions, where there exist efficient contrac-
tion algorithms, e.g., the renormalization group [4,11-13]
and the block decimation [14]. On general systems with
long range interactions and irregular connectivity (such as
the graphs depicted in Fig. 1), the tensor network method is
rarely applied, due to intractability of efficient contraction:
to the best of our knowledge, there is no general method
that exists for approximately contracting arbitrary tensor
networks. This sets limitations on applying tensor networks
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to many areas, such as graphical models, statistical infer-
ence, and machine learning problems.

In this Letter, we aim to break this limitation. We propose
a general method for approximately contracting tensor
networks on an arbitrary graph, based on a method we
term as “MPS calculus”: the initial and intermediate tensors
produced during the tensor contractions are represented,
compressed, and operated using the matrix product states
in the canonical form. This allows us to deal with large
intermediate tensors, which cannot be stored in the memory
in its original form. During the contraction process, we
iteratively detect low-rank structures and apply low-rank
approximations to reduce computational complexities of
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FIG. 1. Illustration of connectivity graph of the tensor
networks we aim to contract: two-dimensional lattices, random
graphs, fully connected graphs, and those defined by the quantum
circuits.
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the contraction, using approaches analogous to the
density matrix renormalization group (DMRG) [11], until
the final result, a scalar Z, is obtained. We show
applications of our method in graphical models, where
Z represents the normalization factor of the joint dis-
tribution of a large number of random variables (i.e., the
partition function in physics), and applications in quan-
tum circuit simulations, where Z represents a single
amplitude of the quantum circuit.

Contracting arbitrary tensor networks.—Our method
relies on two ideas: (1) representing every tensor in the
network by a matrix product state in the canonical form and
(2) performing low-rank approximations based on the MPS
representations during contraction. The matrix product
state, also known as the tensor train in mathematics
[15], is a one-dimensional tensor network composed of
three-way tensors (and matrices in the boundary). A
straightforward advantage of MPS is the parameter effi-
ciency: an n-way tensor A € C?" can be represented by a
MPS of virtual bond dimension y with only (n —2)dy? +
2dy parameters, using, e.g., the DMRG [11]. With a large
enough y, the MPS can faithfully represent the original
tensor and hence give an exact result. With limited
computational resources, one would restrict the bond
dimensions, performed as an approximation to the under-
lying raw tensor .A. Another characteristic of MPS is the
canonical form, which can be achieved using QR decom-
positions or singular value decompositions [16,17]. The
first advantage of the canonical form is fixing the gauge
degree of freedom, which eliminates the nonuniqueness in
representing a raw tensor. More importantly, in the canoni-
cal form, the sum of discarded squared singular values
corresponds to the loss of £, norm of the whole MPS,
rather than the local three-way tensor, which allows low-
rank approximations on a global scope.

Given a tensor network composed of tensors A1) ... A"
and edges connecting the tensors, the high-level description
of our algorithm, MPS calculus, is processed as follows:
(1) Convert every tensor to a MPS. (2) If there are no edges
left, return; else select an edge (ij) according to a
contraction order. (3) “Contract” A and AW, store as
A delete AY). (4) If A connects to AKX by two
edges, “merge" the edges to a single edge using “swap”
operations and low-rank approximations with singular
value decomposition (SVD); then go to step 2.

A pictorial representation of the algorithm is sketched
in Fig. 2 using a simple example of contracting a fully
connected tensor network with five tensors, as shown in
panel 1. In panel 2, every tensor that appears in 1 is
converted to a MPS in the canonical form. During steps
3-8, edges of the tensor network are contracted one
by one, finally producing a scalar in step 9. For
further details about the algorithm and order choices,
please refer to the Supplemental Material [18] and
Refs. [4,11,12,16,17,19-26].
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FIG. 2. Pictorial representation of our algorithm in contracting
a tensor network with five tensors; see descriptions in main text.

The contract operation is processed by merging two
tensors to a single tensor by summing over the common
index (say i) of them. Since all of them are MPSs, we need
to move the common index i to the tail of the first tensor
and to the head of the second tensor, using the swap
operations. The swap operation switches the positions of
two indices in the original tensor, by swapping two adjacent
tensors in the MPS, with a similar functionality as the swap
gate in the quantum information. This operation increases
entanglements of the MPSs, and the maximum bond
dimension could increase to dy, where y denotes the
virtual bond dimension of the MPSs and d is the dimension
of the physical indices. If dy is greater than }, the preset
limit on the virtual bond dimension, we canonicalize the
MPS, then truncate the bond dimension to y during the
singular value decomposition. An example of swap and
contract are illustrated using tensor diagram notations in
Fig. 3, where the scissor symbol indicates truncating of the
dimension in the diagonal matrix.

After the contraction, the obtained tensor could have two
indices, say j (with bond dimension d;) and k (with bond
dimension d;) linked together to another tensor, due to
existence of a triangle with three end tensors. In this case,
we move indices j and k to adjacent positions using the
swap operations and merge the two corresponding tensors
to a three-way tensor with a larger physical bond dimension
d;dy. 1f it exceeds D, the preset maximum physical bond
dimension, we canonicalize both tensors, then do SVD
together with a truncation on singular values to reduce the
bond dimension from d;d; to D. The process is illustrated
in Fig. 3(c).

The operations swap, contraction, and merge are
repeated until the overall tensor network is finally con-
tracted to a scalar Z. Our algorithm takes two parameters,
the maximum physical bond dimension D and the maxi-
mum virtual bond dimension y of the MPSs. The space
complexity of the algorithm is bounded above by O(D7?)
and the time complexity is dominated by singular value
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FIG. 3. Tllustration of the (a) swap, (b) contract, and (c) merge
operations. The scissor symbol indicates truncation of the
singular values.

decompositions adopted in the swap operations, which is
O(D33?). Apparently, it is a polynomial algorithm that is
able to contract arbitrary tensor networks with a limited
amount of computational resources. Moreover, our method
enjoys an efficient approximation scheme analogous to the
DMRG method, which allows dynamically adjusting
dimensions of the tensors. In the following text, we will
give applications of our algorithms, the inference and
learning in the graphical models, and the simulation of
quantum circuits, to empirically evaluate our method.

We noticed that in [27] the author’s have proposed a
general tensor network contraction algorithm by represent-
ing large intermediate tensors using the tree tensor network
and reducing loop length using local singular value
decompositions. Compared with [27], our method is
capable of using larger bound dimensions because the
MPS has lower space complexity than the tree tensor
network. Moreover, the canonical form of MPS allows
more effective approximations.

Applications to graphical models.—Graphical models
are important tools for representing joint probability dis-
tributions over a large number of random variables that
interact with each other and find important applications in
many fields in science and engineering. Without loss of
generality, in this Letter we use the classic example of
the graphical model, the Ising model, and spin glasses in
the statistical physics to demonstrate the power of our
method. In this problem, the joint probability of n spins
s e {x1}* follows the Boltzmann distribution
P(s) = (1/Z)exp|—pE(s)], where E(s) is the energy
function of a configuration s, f is the inverse temperature,
and Z is the partition function. Given a problem instance,
an essential problem is computing the free energy
F = —(1/p)InZ. However, this problem belongs to the
class of #P problems, hence it is hopeless to find poly-
nomial algorithms for solving it exactly. In physics, many

approximate algorithms have been developed. These
include Markov chain Monte Carlo methods [28] and
mean-field methods that parametrize a variational distri-
bution by minimizing the variational free energy. Recently,
in [29], the mean-field methods have been extended by
employing the autoregressive neural networks as a varia-
tional distribution, which, in principle, has a strong
expressive power.

Any probability distribution over discrete variables is a
tensor, thus every graphical model can be converted to a
tensor network by introducing copy tensors on each node
of the graph and matrices (or tensors) on each edge (or
multibody factor) of the (factor) graph. The computation of
the partition function Z naturally translates to contraction of
the tensor network defined exactly on the same graph. As
an example, consider the celebrated pairwise Ising spin
glass model with n variables: its energy function is defined
as E(s) = = > ;jec Jij5i5;» with € denoting a set of edges
and J;; denoting couplings between two spins i and j. The
partition function can be written formally as

Z:Z(l;[geﬂf,-,s,-s,:TrM(l)XA(2> x-x AMY, (1)
s (ij)e

where the symbol X represents contraction of tensors
{A(i)}, each of which is given by contracting a copy
tensor with matrices defined on the edges connected to
node i,

AD =T, 4 X Bicy X Bregi X -+ X Byey;.

Here Z ., is a copy tensor, i.e., a diagonal tensor with
order equal to the degree (number of neighbors) d; of node
i, with one on the diagonal entries and zero on the other
entries. 0i denotes the set of neighbors of node i, and the
matrix Bjcy; is a 2 x 2 matrix with [cosh(BJ;;)/2]'/? +
[sinh(BJ,;)/2]"/? on the diagonal and [cosh(B/J,;)/2]'/* —
[sinh(53J;;)/2]'/? on the off-diagonal entries.

After converting the graphical model to tensor network,
our method directly applies to computing free energy of the
problem defined on arbitrary graphs. Observe that our
algorithm is exact when the graph is a tree, because, by
minimizing the size of the intermediate tensor, it performs
variable eliminations iteratively on leaves of the tree and
hence reduces to the belief propagation algorithm. On other
graphs, our algorithm might generate truncation error egyp.
Empirically we observe that the error egyp is several
magnitudes smaller than the error of the obtained free
energy €, but so far it is not clear to us how to relate the
two errors analytically. We subject to numerical experi-
ments to demonstrate the performance of our algorithm.

The experiments are carried out using the Ising models
and spin glasses on various topologies, including 2D
lattices, random graphs, small world graphs, and complete
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FIG. 4. Relative errors of the free energy to exact solutions obtained by different methods on various models. Insets: illustrations of the
underlying connectivity graph with smaller sizes. (a) Ferromagnetic Ising model on a 16 x 16 square lattice; the exact solutions are
given by [30], and the vertical dashed line represents the phase transition of an infinite system. (b) Ising spin glass model on random
regular graphs of 80 nodes with degree k = 3; couplings J;; are drawn from normal distribution with zero mean and unit variance.
(c) Ising spin glass model on the Watts-Strogatz graphs of 70 nodes with average degree ¢ = 4 and rewiring probability p = 0.4. The
exact solutions are given by enumerating all configurations of feedback set of graphs [31]. (d) The Sherrington-Kirkpatrick model with
n = 20 spins; exact solutions are given by enumerating 2" configurations. Data points are averaged over 10 random instances.

graphs. Our results on error of free energies are compared
against mean-field methods, including the naive mean-field
(NMF), Thouless-Anderson-Palmer equations (TAP),
belief propagation, and the neural-network-based varia-
tional autoregressive networks (VAN). On the 2D lattice
without the external field, the graph is planar, so there are
exact solutions [30]. Whereas on the other graphs, we adopt
the exact (carefully designed) exponential algorithms [31]
(in a reasonable time) to compute exact free energy values
for the evaluations.

The results are shown in Fig. 4. We can see that, in all
experiments, our method outperforms all mean-field meth-
ods and the neural-network-based methods, to a large
margin. In regular random graphs, small world networks,
and the Sherrington-Kirkpatrick model, our accuracy is
only limited by the machine precisions (107!6). In the
experiments, we choose D =50 and 7 =500, and the
computational time on each instance is of a few seconds.
Empirically, our method is faster than the mean-field
methods and the neural-network-based methods. More
results about the dependence of the bond dimensions
and the computational time can be found in the
Supplemental Material [18]. Moreover, it is worth noting
that combining with the autodifferential for tensor networks
[32] immediately gives our method an ability to perform
learning tasks using graphical models. In the Supplemental
Material [18], we give an example of using our method to
learn a generative model [33—43] on hand-written digits of
the MNIST dataset [44].

Application to quantum circuit simulations.—The prob-
lem of computing free energy of graphical models is similar
to the problem of computing single amplitude estimates of
a superconducting quantum circuit [45], which can be
treated as a graphical model with complex couplings.
Classical simulation of quantum circuits is important for

verifying and evaluating the computational advances of
quantum computers [20,22-24,46,47]. However, the near-
term noisy intermediate-scale quantum circuits (including
Google’s recently announced “supremacy circuit” [48]) are
not perfect: each operation of them contains a small error.
Thus, an important open question is whether approximate
simulations of quantum circuits could beat the noisy
quantum device. Answering this question apparently
requires advanced studies of approximate algorithms for
simulating quantum circuits.

Our method directly applies to approximate single-
amplitude simulation of quantum circuits with any kind
of connectivities, such as two-dimensional lattice [23,24]
and random regular graphs, as considered in the quantum
approximate optimization algorithm [49], after converting
the initial state, the measurement qubit string, and the gates
into tensors. The key difference between our method and
existing methods for quantum circuit simulation is that, by
detecting low-rank structures in the circuit, our method
heavily reduces the computational complexity. Although
this introduces SVD truncation errors, we will illustrate
that, at least in the shallow circuits, the error is almost
negligible. We perform experiments using standard random
circuits on two-dimensional lattices [22—-24], which iter-
atively apply single-qubit gates and two-qubit controlled Z
gates to the initial |0, 0, ..., 0) state, and finally measure the
amplitude of a specific qubit string. The generation pro-
tocol is described in detail in the Supplemental Material
[18]. We evaluate the performance of our method against
the recently developed state-of-the-art exact tensor con-
traction method [24], which has a precisely predictable
space and time complexity. With depth d = 8, our algo-
rithm can handle circuits with at most 40 x 40 = 1600
qubits with SVD accumulated truncation error egyp <
1072 on a workstation with 64 GB memory in an hour.
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FIG. 5. Computational time and memory usage of our algo-

rithm in simulating random quantum circuits with depth d = 8§,
comparing with the exact tensor network method of Guo et al.
[24]. We ran our algorithm on a workstation with 64 GB memory
(as indicated by the red dashed line). The blue lines with formulas
in the figure represent the precise time and space complexity of
the exact algorithm [24]. The memory usage is calculated based
on double precision complex number. Each red point in the left
panel is averaged over 10 random circuits, and the error bars are
much smaller than the symbol size.

As compared in Fig. 5, the computational complexity of our
method is much lower than the method of [24]. The right
panel of Fig. 5 indicates that the method of [24] already
costs at least 64 GB memory for storing the largest
intermediate tensor with L =31 and further requires
32 TB memory for handling L = 40. We note that so
far our algorithm cannot handle the circuit with a large
depth such as Google’s circuit [48] with a small SVD error,
because the current implementation of our algorithm only
works on a single workstation; this prevents us from using a
large bond dimension.

Discussions.—We have presented an algorithm for con-
tracting arbitrary tensor networks, based on the matrix
product state for automatic detecting of low-rank structures
inside the tensor networks during the contraction process.
We have demonstrated advances of our method in the
inference and learning in graphical models and in simu-
lation of shallow quantum circuits. The particular strength
of our method is able to find the internal low-entanglement
structures automatically in the irregular tensor networks.
The MPS representation of tensors in our method naturally
supports distributed storage. It is interesting to see how
large a quantum circuit we can simulate if a supercomputer
is accessible to our algorithm. Another interesting develop-
ment is exploring learning with quantum circuits using our
scheme and backpropagation. We hope more advanced
arbitrary tensor network contraction methods inspired by
our approach could fully release the numerical computa-
tional power of tensor networks to wider applications in
science and engineering. A PYTHON implementation of our
method is available at [50].
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