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We model power grids as graphs with heavy-tailed sinks, which represent demand from cities, and study
cascading failures on such graphs. Our analysis links the scale-free nature of blackout sizes to the scale-free
nature of city sizes, contrasting previous studies suggesting that this nature is governed by self-organized
criticality. Our results are based on a new mathematical framework combining the physics of power flow
with rare event analysis for heavy-tailed distributions, and are validated using various synthetic networks
and the German transmission grid.
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Securing a reliable power grid is of tremendous societal
importance due to the highly disruptive repercussions of
blackouts. Yet the study of cascading failures in power
grids is a notoriously challenging problem due to its sheer
size, combinatorial nature, mixed continuous and discrete
processes, and physics and engineering specifications
[1–5]. Traditional epidemics models [6–9] are unsuitable
for its study, as the physics of power flow are responsible
for a nonlocal propagation of failures [10]. This challenge
has created extensive interest from the engineering and
physics communities [11–17]. Analytic models determin-
ing the blackout size ignore the microscopic dynamics of
power flow, while the analysis of more realistic networks
typically does not go beyond simulation studies. Therefore,
a fundamental understanding of blackouts is lacking.
The total blackout size, measured in terms of number of

customers affected, is known to be scale free [18–21],
meaning there exist constants C, α > 0 such that

PðS > xÞ ≈ Cx−α; ð1Þ

where ≈ means that the ratio of both quantities approaches
1 as x → ∞. This law, also known as the Pareto law, occurs
in many applications of science and engineering [22–26].
Its significance in our context lies in the fact that big
blackouts are substantially more likely than one would infer
from more conventional statistical laws. As a result,
mitigation policies cannot write off extremely large black-
outs as virtually impossible events, and should focus on
those in equal proportion to the small, frequent ones. Given
the tremendous societal impact of large blackouts, under-
standing why Eq. (1) occurs can lead to focused prevention
and/or mitigation policies and is therefore of major
significance.
Several attempts to explain Eq. (1) have appeared in the

literature. Using simulations, previous studies suggest that
Eq. (1) may occur as a consequence of self-organized

criticality [1,18,19,27,28]. Specifically, Ref. [18] compares
simulation traces of a model for blackouts with those of a
model that is known to exhibit self-organized criticality,
and shows that the autocorrelation functions are similar.
Such indirect analogies of different observables do not
provide direct explanations into the precise mechanism
behind Eq. (1).
Other strands of literature model the cascading mecha-

nism as a branching process with critical offspring dis-
tribution [29], without taking physical laws of electricity
into consideration. Such models lead to blackout sizes with
infinite mean, corresponding to a value of α ¼ 0.5. While a
naive parametric estimation procedure using all data would
lead to values of α in the range (0,1), modern statistical
techniques focusing on the tail end of the distribution
clearly indicate a finite mean blackout size [20,21].
In this Letter, we propose a radically different and much

simpler explanation than the aforementioned suggestions.
Our central hypothesis is that Eq. (1) is inherited from a
similar law for the distribution of city sizes [26,30–32]. We
support this claim with a careful analysis of actual data, a
new mathematical framework, and supporting simulations
for additional insight and validation.
To develop intuition, we view the power grid as a

connected graph where nodes represent cities, which are
connected by edges modeling transmission lines. Initially,
this is a single fully functioning network with balanced
supply and demand. After several line failures, the network
breaks into disconnected subnetworks, referred to as
islands. The balance between supply and demand is not
guaranteed to hold in each island, and at least one island is
facing a power shortage. As the sum of total demand will be
proportional to the total population in the island, the size of
the power shortage is proportional to the total population,
which is the sum of cities in that island. We now invoke a
property of sums of Pareto distributed random variables,
which informally says that the sum is dominated by the
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maximum. In other words, the size of the largest city in this
island drives the scale-free nature of the blackout. In
extreme value theory, this is known as the principle of a
single big jump [33,34].
This line of reasoning implies that city sizes and blackout

sizes both have Pareto distributions with similar tail
behavior. For the case of the U.S. blackout sizes (in terms
of the number of customers affected) and city sizes (in
terms of population), we confirm this with historical data as
summarized in Fig. 1, which shows that the parameters α
for blackout and city sizes distributions are remarkably
similar, each having a finite mean. See Supplemental
Material [35], Sec. II, for details.
In what follows, we make our claim rigorous by

introducing a new mathematical framework that captures
the salient characteristics of actual power system dynamics
[1] and sheds light on the connection between blackout and
city sizes. For a full account, see Ref. [35], Sec. IV.
We consider a network with n nodes and m lines. Node i

represents a city with Xi inhabitants. We consider a static
setting where each inhabitant demands one unit of energy.
We assume that the Xi’s are independent and identically
distributed Pareto random variables withPðX > xÞ ≈ Kx−α

for constantsK, α > 0. For convenience, we label the nodes
such that X1 represents the largest city.
For the electricity line flows, we adopt a linear dc power

flow model. This model approximates the more involved ac
power flow equations, is widely used in high-voltage
transmission system analysis [51], and accurately described
the evolution of the 2011 San Diego blackout [52].
Specifically, if g ¼ ðg1;…; gnÞ and X ¼ ðX1;…; XnÞ re-
present the power generation and demand at each city, then
the line flows f ¼ ðf1;…; fmÞ are given by f ¼ Vðg −XÞ,
where the matrix V ∈ Rm×n is determined by the network
topology and the line reactances.
Our framework consists of three stages called planning,

operational, and emergency. The first two stages determine

the actual line limits and line flows. We employ the widely
used direct current optimal power flow (dc OPF) formu-
lation with quadratic supply cost functions [1]:

min
g

1

2

Xn

i¼1

g2i

such that
Xn

i¼1

gi ¼
Xn

i¼1

Xi; ð2Þ

subject to the reliability constraint

−f̄ ≤ Vðg −XÞ ≤ f̄: ð3Þ

The planning stage concerns how the operational line limits
f̄ are set. For this, we solve Eq. (2) without Eq. (3), yielding

the uniform (across cities) solution gðplÞj ¼ ð1=nÞPn
i¼1 Xi

for all j ≥ 1, and fðplÞ ¼ −VX (see Ref. [35], Sec. IV).
Then, the operational line limits f̄ are set as

f̄l ¼ λjfðplÞl j ¼ λjðVXÞlj; l ¼ 1;…; m; ð4Þ

where λ ∈ ð0; 1� is a safety tuning parameter, referred to as
loading factor. In the operational stage, we solve Eq. (2)
subject to Eq. (3), yielding a different solution gðopÞ which
is not uniform due to the constraint (3). Equation (4)
implies that line flows can have a heavy tail, which is
consistent with impedance data [53]. This property is
essential, as it allows us to create a subnetwork in which
the mismatch between supply and demand is heavy tailed.
This mismatch is established in the emergency stage,

which is described next. We focus on cascades initiated by
a single line failure, sampled uniformly across all lines. A
line failure changes the topology of the grid and causes a
global redistribution of network flows according to power
flow physics. Consecutive failures occur whenever there
are one or more lines for which the redistributed power flow
exceeds its emergency line limit Fl ¼ f̄l=λ. Failures are
assumed to occur subsequently, and take place at the line
where the relative exceedance is largest. Whenever line
failures create additional islands, we proportionally lower
either generation or demand at all nodes to restore power
balance. The cascade continues within each island until
none of the remaining emergency line limits are exceeded
anymore.
Our formulation may be extended to handle multiple

initial failures, correlated city sizes, generator failures,
simultaneous failures, generation limits, other strictly con-
vex supply cost functions, and other load-shedding mech-
anisms. Such variations would affect the value of the
prefactor C, but not the exponent α: the tail of the blackout
distribution is dominated by the scenario where there is a
single city that has a large power demand, while the
demand of the other cities is negligible. A formal version
of this statement is that, for sufficiently small ϵ,
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FIG. 1. Left: Pareto tail behavior of U.S. city [25] and blackout
sizes [50] in the region x > xmin. Estimates are based on PLFIT

[25]. Points depict the empirical complementary cumulative
distribution function (CCDF); solid line depicts the CCDF of
a Pareto distribution with parameters α, xmin. Right: Hill estimator
xmin → αðxminÞ, also known as the Hill plot [35]. The PLFIT

estimates for city sizes (blue dot) and blackout sizes (red dot) lie
within a relatively flat region of the graph, providing support for
the Pareto fit.
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PðS > xÞ ¼ PðS > x;X1 > x; Xi ≤ ϵx; i ≥ 2Þ þ oðx−αÞ:
ð5Þ

This is a mathematical description of the aforementioned
principle of a single big jump. After a normalization
argument, it suffices to consider the case where X1 ¼ y >
0 and Xj ¼ 0 for j ≥ 2. Then, the solution of the opera-

tional dc OPF can be computed in closed form: gðopÞ1 ¼
½1 − λðn − 1Þ=n�y and gðopÞj ¼ ðλ=nÞy for j ≥ 2 (see
Ref. [35], Lemma 4.2). Let A1 be the set of nodes that
represents the island containing the largest city, after the
cascade has stopped. The islands that do not contain the
largest city must lower their generation to zero after a
disconnection, and hence immediately turn stable. Iterating,
the blackout size in component A1 is given by

S ¼
X

i∈A1

ðXi − giÞ ¼
X

j∉A1

ðgj − XjÞ ¼ λ
n − jA1j

n
y: ð6Þ

Integrating over realizations of X1 ¼ y, y ≥ x, and using
the property of Pareto tails PðmaxðX1;…; XnÞ > xÞ≈
nPðX > xÞ ≈ nKx−α [33], we find that Eq. (1) holds with

C ¼ nK
Xn−1

j¼1

PðjA1j ¼ jÞλαð1 − j=nÞα ∈ ½0;∞Þ: ð7Þ

The most delicate step, for which Ref. [35], Sec. IV.D
provides a rigorous proof, is to show that the cascade
sequence does not change when performing the normali-
zation argument in the limit x → ∞, which is nontrivial due
to continuity issues.
In Ref. [35], Sec. IV, we show that the prefactor C in

Eq. (7) is discontinuous at a discrete set of values of λ. At
such points, the number of possible scenarios leading to a
large blackout is increasing and/or jA1j is decreasing in λ.
We illustrate this in Fig. 2, which also shows how the
principle of a single big jump (5), which links the total

blackout size to the size of the largest city X1, is realized by
means of a few load-shedding events, each of which is a
fixed fraction of X1 and corresponds to a network
disconnection.
Our analysis illustrates how heavy-tailed city sizes cause

heavy-tailed blackout sizes. Our modeling choices allow
for a precise exploration of the cascade sequence, and,
inherently, an explicit formula for the blackout size tail.
However, we emphasize that the essential elements that
lead to heavy-tailed blackout sizes are that both the
demands and the line limits are heavy tailed. The small
nodes together generate a non-negligible fraction of the
demand of the large node. When the power grid satisfies
these properties, then Eq. (5) continues to hold, leading to a
heavy-tailed mismatch whenever there is a disconnection.
We illustrate this numerically by studying the effect of
relaxing several assumptions in our framework.
The choice of a quadratic cost function in the dc OPF

ensures that it is most efficient to divide the power
generation as equally as possible among the cities, causing
all cities to generate a non-negligible fraction of the total
demand. Other strictly convex increasing cost functions
would lead to a similar effect. Moreover, our result is robust
to piecewise linear cost functions (see Ref. [35], Sec. VI.C),
and to the inclusion of generation limits, as long as these
limits are a non-negligible fraction of the total demand.
To illustrate the sensitivity of our result with respect to the

chosen power flow model, we partially extend our frame-
work to the ac power flow model. We tested its effect on
multiple network topologies, and as illustrated in Fig. 3(a),
we conclude that city size tails still drive the blackout size
tail even when the dc assumption is violated. Intuitively, the
chosen power flow model determines the redistribution of
flow after failures, and thus the cascade sequence. This
effect is captured in the prefactor, but does not destroy the
Pareto-tailed consequence in the blackout size.
An important remark is that our mathematical framework

relies on the city sizes to be random variables. Naturally,
city sizes are essentially fixed. The remaining source of

FIG. 2. Cascade in a six-node network with X1 ¼ 1, Xj ¼ 0 for j ≥ 2, λ > 3=4. The four lower and upper line flows are λ=24 and
5λ=24, respectively, with corresponding emergency limits 1=24 and 5=24. The failure of an upper line causes the load on the adjacent
lower line to surge to λ=6 > 1=24, causing this line to trip (stage 2). This cutoff leads to the load on the three remaining lower lines to
surge to λ=18, causing them to trip as well (stage 3). After isolating nodes 2 and 6, the cascade ends with jA1j ¼ 4 and a total load shed of
2λ=6 (stage 4).

PHYSICAL REVIEW LETTERS 125, 058301 (2020)

058301-3



randomness in our framework, namely the location of the
first failure, can be interpreted as a mechanism to bootstrap
linear combinations of city sizes. It is well known [33] that
bootstrap methods cannot recover heavy-tailed behavior if
the dataset is small. In order to recover a Pareto tail, the
frozen network therefore needs to be sufficiently large, e.g.,
104 nodes. To illustrate this, Fig. 3(b) shows simulation
results for the SynGrid model, a random graph model
designed to generate realistic power grid topologies [53].
Finally, Fig. 3(c) reveals that Pareto-tailed city sizes is a
crucial assumption in order to recover the same scale-free
behavior for blackout sizes, as light-tailed city sizes do not
lead to heavy-tailed blackout sizes. Additional supporting
experiments are reported in Ref. [35], Sec. VI.
We next present experimental results using the SciGRID

network [54,55], a model of the German transmission grid
that includes generation limits and relaxes several assump-
tions. We simulate blackout realizations by considering one
year’s worth of hourly snapshots. For each snapshot, we
solve the operational dc OPF and remove one line uni-
formly at random, initiating a cascade. To assign city sizes
to nodes, we have cities correspond to German districts,
and we assign a fraction of the population of each district to
specific nodes based on a Voronoi tessellation procedure. In
this way, we account for the feature that a single city can
encompass multiple nodes in a network. For more details,
see Ref. [35], Sec. VII.
The German SciGRID network has a relatively small

number of nodes (less than 600), and city sizes are frozen.
Therefore, we do not recover Pareto-tailed blackout sizes.
However, uniformly across different loading factors λ, we
found that the preponderance of blackouts involves just a

single load-shedding event due to a network disconnection.
For a moderate loading factor λ ¼ 0.7, nearly 98% of
blackouts only involve a single disconnection. Even for a
high loading factor λ ¼ 0.9, 90% of the blackouts involve a
single disconnection, and the fraction of blackouts with
four or more disconnections is below 4%. Figure 4 depicts
the largest observed blackout, for different values of λ.
Even in these massive blackouts, the bulk of the total load
shed is the result of a few load-shedding events. These
observations are typical properties that follow from our
framework (see Fig. 2), and sharply contrast the branching
process approximations where many small jumps
take place.
Using data analysis, probabilistic analysis, and simula-

tions, we have illustrated how extreme variations in city
sizes can cause the scale-free nature of blackouts. Our
explanation and refinement (7) of the scaling law (1) show
that specific details such as network characteristics only
appear in the prefactor (7). The main parameter α, which
determines how fast the probability of a big blackout
vanishes as its size grows, is completely determined by
the city size distribution. Decreasing the constant (7) by
performing network upgrades (which in our framework is
equivalent to decreasing λ) would only lead to a modest
decrease in the likelihood of big blackouts. Consequently, it
is questionable whether network upgrades, as considered in
Refs. [19,56], are the most effective way to mitigate the
consequences of big blackouts.

(a) (b) (c)

FIG. 3. Pareto tail behavior of simulated blackout sizes using
the described cascade model with relaxed assumptions, for
different topologies and loading factor λ ¼ 0.9. City sizes are
sampled from a Pareto distribution with tail index αðcityÞ ¼ 1.37 in
(a),(b), and from a uniform distribution with the same mean in (c).
Top: Points depict the empirical CCDF, dashed line depicts the
CCDF of a Pareto distribution with parameters α, xmin, estimated
via PLFIT [25]. Bottom: Hill plots. Red line corresponds to the tail
index αðcityÞ. A good fit is achieved when the PLFIT estimate (blue
dot) lies in a flat region closely tracing the red line.
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FIG. 4. Dissection of a massive blackout in the SciGRID network
for loading factors λ ¼ 0.7 (left) and λ ¼ 0.9 (right) in terms of
the cumulative number of affected customers at each stage of the
cascade, as displayed in the top charts with the selected stage
colored red. The corresponding islanded components are visu-
alized with different colors in the bottom illustrations.
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Instead, it may be more effective to invest in responsive
measures that enable consumers to react to big blackouts. It
is shown in Ref. [20] that durations of blackouts have a tail
which is decreasing much faster than Eq. (1). At the same
time, production facilities often lack redundancy—even
short blackouts can lead to huge costs, suggesting that the
costs associated to a blackout are concave up to a certain
duration. Therefore, if the goal is to minimize the negative
effects of a big blackout, it may be far more effective to
invest in solutions (such as local generation and storage)
that aim at surviving a blackout of a specific duration. This
is consistent with recent studies on the importance of
resilient city design [57].
Finally, our framework and insights suggest new ways of

approaching scale-free phenomena in other transportation
networks, such as highway traffic jams [58]. While trans-
port network topologies are not scale free, they may still
exhibit scale-free behavior, caused by the scale-free nature
of nodal sizes.
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