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We study the quantum and thermal phase transition phenomena of the SU(3) Heisenberg model on
triangular lattice in the presence of magnetic fields. Performing a scaling analysis on large-size cluster
mean-field calculations endowed with a density-matrix renormalization-group solver, we reveal the
quantum phases selected by quantum fluctuations from the massively degenerate classical ground-state
manifold. The magnetization process up to saturation reflects three different magnetic phases. The low- and
high-field phases have strong nematic nature, and especially the latter is found only via a nontrivial
reconstruction of symmetry generators from the standard spin and quadrupolar description. We also
perform a semiclassical Monte Carlo simulation to show that thermal fluctuations prefer the same three
phases as well. Moreover, we find that exotic topological phase transitions driven by the binding-unbinding
of fractional (half-)vortices take place, due to the nematicity of the low- and high-field phases. Possible
experimental realization with alkaline-earth-like cold atoms is also discussed.
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Introduction.—In solid-state physics, lattice
Hamiltonians symmetric under the special unitary group
of degree N ¼ 2, denoted by SU(2), have been intensively
studied since the electron—the main actor in solids—has
two internal (spin) degrees of freedom. Higher degree of
symmetry, orN > 2, can be accessed only with fine-tuning
of parameters in some models, e.g., of spin liquid crystals
[1–3] and transition metal oxides [4–7], or as a conse-
quence of exotic emergent phases [8–10]. However, recent
advances in experiments with cold gases of alkaline-
earth(-like) atoms, such as 173Yb [11–17] and 87Sr
[18,19], have provided a new platform and strong motiva-
tion in studying the enhanced continuous symmetry of
SU(N > 2). Since those atoms possess symmetric inter-
actions under nuclear spin I (I ¼ 5=2 for Yb and 9=2 for
Sr), loading them into optical lattices enables us to create an
ideal quantum simulator of the SUðN ≤ 2I þ 1Þ extension
of the Hubbard model [20] and its strong-coupling limit,
namely the SUðN Þ Heisenberg model [21,22]. In such
higher symmetric systems, the ground states often form a
massively (quasi)degenerate manifold. Therefore, of par-
ticular interest are the quantum and thermal fluctuations
selecting one of the many-body states and the emergence of
exotic phase transition phenomena [23].
The SU(3) Heisenberg model on triangular lattice has

been theoretically studied as a special symmetric point of
the spin-1 bilinear-biquadratic model [24–26]. Since the
number of colors (N ¼ 3) is compatible with the tripartite
structure of the triangular lattice, the SU(3) Heisenberg
model with antiferromagnetic couplings exhibits no (ap-
parent) geometrical frustration, unlike the SU(2) case [27].

Indeed, the ground state is uniquely determined (up to
trivial degeneracy) to be a simple three-color three-sub-
lattice order at the level of the classical, mean-field,
analysis [24,25], and it has been confirmed by numerical
investigations [26]. Whereas the ground state may not be so
exciting, the properties under the presence of magnetic field
remain an interesting open problem since the mean-field
analysis yields an accidental continuous degeneracy [24].
In this Letter, we explore the effect of quantum and

thermal fluctuations on the phase transition phenomena of
the triangular SU(3) Heisenberg model in magnetic fields.
High magnetic field experiments have been playing a
central role in understanding the properties of magnetic
materials [28], one of the fundamental reasons being that a
magnetic field, in combination with lattice geometry,
topological features, fluctuation effects, etc., stimulates
the emergence of a rich variety of nontrivial magnetic
states such as magnetization plateaus [29–31], nematic
states [32,33], and field-induced quantum spin liquids
[31,34]. This is naturally expected to occur for general
SUðN Þ systems.
First, we employ the cluster mean-field plus scaling

(CMFþ S) method [35–37] with two-dimensional (2D)
density-matrix renormalization-group (DMRG) solver [38]
to reveal the quantum phases selected from the nontrivial
classical ground-state manifold. We find that the quantum
order-by-disorder mechanism stabilizes three different
phases depending on the field strength, until the system
reaches the magnetic saturation. Of particular significance
is that, although the high-field (HF) phase appears to be a
conventional (nonnematic) spin order in terms of the spin
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and quadrupolar operators, we reveal a concealed nematic
nature by reconstructing the symmetry generators.
Furthermore, we develop a framework of semiclassical
multicolor Monte Carlo simulations [39] by introducing a
“relaxation acceleration” technique, and discuss the ther-
mal phase transition phenomena. In addition to the stabi-
lization of the same three phases by thermal fluctuations,
we find particular topological phase transitions character-
ized by the binding-unbinding of fractional (half-)vortices.
SU(3) Heisenberg model in magnetic fields.—The SU(3)

Heisenberg model is given by

ĤSUð3Þ ¼ 2J
X

hi;ji

X

A¼1;2;…;8

T̂A
i T̂

A
j ðJ > 0Þ; ð1Þ

where T̂A
i ¼ λ̂Ai =2 are the eight generators of the SU(3) Lie

algebra in the defining representation. To draw connections
to the spin physics, here we employ the spin-1 operator
Ŝi ¼ ðŜxi ; Ŝyi ; Ŝzi Þ for A ¼ 1, 2, 3 and the quadrupolar

operator Q̂i ¼ ðQ̂x2−y2
i ; Q̂z2

i ; Q̂
xy
i ; Q̂yz

i ; Q̂
xz
i Þ for A ¼

4;…; 8 as λ̂Ai , instead of the standard Gell-Mann matrix
basis. The quadrupolar operators are ðŜxi Þ2 − ðŜyi Þ2,ffiffiffi
3

p ðŜzi Þ2 − 2=
ffiffiffi
3

p
, Ŝxi Ŝ

y
i þ Ŝyi Ŝ

x
i , Ŝyi Ŝ

z
i þ Ŝzi Ŝ

y
i , and

Ŝzi Ŝ
x
i þ Ŝxi Ŝ

z
i , respectively. In this spin-1 representation,

the Hamiltonian (1) is equivalent to the bilinear-biquadratic
model [23–26,40,41] with equal positive coefficients, act-
ing on spin states σ ¼ −1, 0, 1:

ĤSUð3Þ ¼
J
2

X

hi;ji
ðŜi · Ŝj þ Q̂i · Q̂jÞ: ð2Þ

Below, we discuss the system under magnetic (Zeeman)
fields: Ĥ≡ ĤSUð3Þ þ ĤZ with ĤZ ¼ −H

P
i Ŝ

z
i . The mag-

netic field explicitly breaks the SU(3) symmetry down to
Uð1Þ × Uð1Þ; specifically, the global rotations around the
Ŝz and Q̂z2 axes [hereafter, written as Uð1ÞSz and Uð1Þ

Qz2 ]

remain since
P

i½Ŝzi ; Ĥ� ¼ P
i½Q̂z2

i ; Ĥ� ¼ 0. Within the
site-decoupling mean-field approximation [24], the specific
spin and quadratic orders in the ground state for 0 < H <
Hs (with Hs ¼ 9J) exhibit a massive, accidental degen-
eracy not related to the symmetries of the system. The
detailed structure of the degenerate ground-state manifold
is described in the Supplemental Material [42].
Quantum order by disorder.—In order to discuss the

lifting of the accidental degeneracy by quantum fluctua-
tions, we perform the CMFþ S calculations [35–37] with
2D DMRG solver [38]. We employ a triangular-shaped
cluster of NC sites, in which the quantum intersite
correlations are treated exactly within the cluster, whereas
the couplings with the outside spins are replaced by
mean-field interactions. Under the three-sublattice
(μ ¼ A, B, C) ansatz, the self-consistent equations
hŜμi ¼ ð3=NCÞ

P
iμ∈ChΨNC

jŜiμ jΨNC
i and the analogous

expressions for hQ̂μi are solved by calculating the ground
state of the NC-site cluster jΨNC

i, with 2D DMRG in an
iterative way until convergence [38]. The scaling parameter
ζ≡ NB=ð3NCÞ, with NB being the number of bonds inside
the cluster, serves as an indicator of the extent to which
quantum correlations are taken into account, interpolating
the classical (NC ¼ 1; ζ ¼ 0) and exactly quantum
(NC → ∞; ζ ¼ 1) limits. Here we perform the calculations
for NC ¼ 10, 15, 21 (ζ ¼ 3=5; 2=3; 5=7) and make the
linear extrapolation of the results toward ζ → 1 with an
error bar estimated from the derivation of different sets of
cluster sizes used for the extrapolation. The larger size
cluster of NC ¼ 36 (ζ ¼ 7=9) is also considered for the
determination of the phase boundaries (see the inset
of Fig. 1).
We plot the quantum magnetization curves MðHÞ≡P
μhŜzμi=3 obtained by the CMFþ S in Fig. 1. The low-

field (LF) phase is characterized by hŜzAi ¼ hŜzBi ≠
hŜzCi ≈ 0, hQ̂x2−y2

A i ¼ −hQ̂x2−y2
B i, and hQ̂x2−y2

C i ¼ 0, modulo
a global rotation in the (Qx2−y2 , Qxy) plane and sublattice
exchanges; the other components are all zero [see
Fig. 2(a)]. Although the spin sector ðSx; Sy; SzÞ forms a
collinear structure along the field axis, the transverse
quadrupolar moments ðQx2−y2 ; QxyÞ break the rotational
symmetry around Sz. It is particularly interesting that a π

rotation around the Sz axis is sufficient for ðQx2−y2 ; QxyÞ to
return the initial state as illustrated in Fig. 2(b) due to the
nematic nature, reflecting the factor 2 in the commutation
relation ½Q̂x2−y2 ; Q̂xy� ¼ 2iŜz. Thus, it is concluded that the
LF phase breaks the ½Uð1ÞSz=Z2� × Z3 (i.e., half of the
original rotational and threefold translational) symmetries.
Consequently, the remaining Uð1Þ

Qz2 symmetry guarantees

the preservation of the uniform nematic scalar order

FIG. 1. Field dependences of the magnetization M (blue
circles) and the uniform scalar nematic order parameter Su
(divided by

ffiffiffi
3

p
, red triangles), obtained by the CMFþ S

analysis. The classical (mean-field) value ofM is plotted together
(dashed line). Left and right axes are shifted by 2=3. The inset
shows cluster-size scalings of the critical fields.
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parameter Su ≡P
μhQ̂z2

μ i=3, resulting in the plateau for-
mation at zero value in Fig. 1.
At H ¼ Hc1 ¼ 3.40J, the transverse quadrupolar

moments vanish and the Uð1ÞSz symmetry is restored.
Thus, in the intermediate-field (IF) phase, both M
and Su exhibit plateau behavior in the range of
Hc1 < H < Hc2 ¼ 4.38J. The longitudinal spin moments
hŜzμi have the values of approximately (1, 1, 0) (not exactly,
due to quantum depletion) and thus M ¼ 2=3. Such a
plateau formation has been reported in the spin-1 bilinear-
biquadratic model when the quadrapolar coupling is larger
than the dipolar one [24]. Our results showed that the
plateau is stabilized by purely quantum effects even for
equal bilinear-biquadratic [SU(3)-symmetric] coupling.
In the HF phase, the spin ðSx; Sy; SzÞ sector forms a “2:1”

structure of the V shape, similar to the SU(2) case [29].
Therefore, it apparently seems to be a standard non-nematic
spin order. However, we notice that the curves of M and
Su=

ffiffiffi
3

p
differ only by a constant shift of 2=3. We show that

this feature stems from a particular spontaneous partial
breaking of Uð1ÞSz ×Uð1Þ

Qz2 : the linear combination of

generators P̂z
þ ≡ 1

2
Ŝz þ ð ffiffiffi

3
p

=2ÞQ̂z2 is broken, while P̂z
− ≡

ð ffiffiffi
3

p
=2ÞŜz − 1

2
Q̂z2 is preserved. The Uð1ÞPz

�
action produ-

ces a rotation of the system in the plane of P̂x
� ≡ ðŜx �

Q̂xzÞ= ffiffiffi
2

p
and P̂y

� ≡ ðŜy � Q̂yzÞ= ffiffiffi
2

p
. As is seen in

Fig. 2(a), the transverse spin and quadrupolar moments
hold the relation hP̂x

−;μi ¼ hP̂y
−;μi ¼ 0 in the HF phase,

which indicates the preservation of the Uð1ÞPz
−
symmetry.

As for the broken Uð1ÞPz
þ
, a π rotation is sufficient

for ðP̂xþ; P̂
y
þÞ to return to the initial state since

½P̂xþ; P̂
y
þ� ¼ 2iP̂z

þ, and thus the HF phase possesses a
nematic nature despite the apparent spin (dipolar) order.
Considering also the sublattice exchange, we conclude that
the HF phase breaks ½Uð1ÞPz

þ
=Z2� × Z3.

The above results extend the widely believed conjecture
[23], originally formulated for the standard SU(2) case, that
the order-by-disorder selection mostly favors a “collinear”
state with only diagonal components, followed by
“coplanar” states with the moment vectors on all sublattices
lying in one plane that includes the rotation axis, since their
fluctuations are softer. Here we have demonstrated that this
is true also in a model with underlying SU(3) symmetry
(see also Ref. [42] for the linear flavor-wave excitation
spectra): the IF phase, having only diagonal order, is
collinear, whereas the other two phases can be seen to
be coplanar once the appropriate plane, containing the
rotation axis (broken symmetry generator), in the SU(3)
space is identified [the (Qx2−y2 ,Sz) plane for LF and the
(Pxþ,P

z
þ) plane for HF in the gauge of Fig. 2(a)].

Thermal phase diagram.—Given the strong nematic
nature of the zero-temperature phases, it is interesting to
study the thermal phase transitions, especially associated
with the ½Uð1Þ=Z2� × Z3 symmetry breaking. We employ
the semiclassical Monte Carlo simulations [39] within the
direct-product approximation: jΨcli ¼⊗i jψ ii with local
wave functions jψ ii ¼

P
σ di;σjσii (jdij2 ¼ 1). The stan-

dard Metropolis updates are performed for the coefficients
di;σ on L × L rhombic clusters under periodic boundary
conditions, based on the Boltzmann distribution p ∝
expð−Ecl=kBTÞ with Ecl ≡ hΨcljĤjΨcli [39]. We further
develop the method by applying a “relaxation acceleration”
with local unitary transformations eicĤ

loc
i jψ ii, where c are

uniformly distributed random numbers and Ĥloc
i ≡

ð⊗j≠i hψ jjÞĤð⊗j≠i jψ jiÞ. Here we choose, after some
trials, jcj ≤ πkĤloc

i k−1F with k � � � kF being the Frobenius
norm. The relaxation-acceleration sweeps over lattice sites
are performed twice following each Metropolis update
sweep. This method, applied to highly symmetric systems,
is significantly more efficient in improving decorrelation
and avoiding trapping in local minima [42].
Figure 3 shows the thermal phase diagram obtained by

the semiclassical Monte Carlo method, which is reliable in
the region away from the low-temperature quantum regime,
since it neglects the intersite quantum correlations. It is seen
that the same three (LF, IF, and HF) phases are selected also
by thermal fluctuations from the classical degenerate
manifolds at T ¼ 0. The boundaries are determined by
the divergence of the correlation length and the scaling
analyses of the susceptibility for the corresponding com-
ponents [42].

(a) (b)

FIG. 2. (a) Nonzero components of the spin and quadrupolar
moments, obtained by the CMFþ S analysis in a fixed gauge
with hQ̂xy

A i ¼ hQ̂yz
A i ¼ 0. The inset shows the three-sublattice

structure. (b) Spherical plots of jhSjQ̂x2−y2 jSij and its π=2 and π
rotations about Uð1ÞSz with jSi being the spin coherent state
pointing in the S direction [23].
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We show in Fig. 4(a) the stiffness ρSzðTÞ for a twist of the
spin and quadrupolar moments around Sz near the LF-IF
transition. It is seen that ρSzðTÞ at the transition point
T ¼ Tc does not satisfy the standard universal relation
ρSzðTcÞ ¼ 2kBTc=π for the Berezinskii-Kosterlitz-
Thouless transitions [49]. This is attributed to the nematic
nature of ðQx2−y2 ; QxyÞ, which break Uð1Þ=Z2 rotations
around Sz [shown in Fig. 2(b)]. Because of this, the
ðQx2−y2 ; QxyÞ moments can form a topologically stable
vortex with fractional vorticity ρv ¼ 1=2 [Fig. 4(b)], unlike
in the standard XY universality class, where ρv ¼ 1. This
half-vortex is analogous to the 180° disclination of nematic
liquid crystals [50]. The transition from LF to IF is
associated with the unbinding of pairs of half-vortex and
half-antivortex, resulting in the modified universal relation
ρSzðTcÞ ¼ 2kBTc=πρ2v ¼ 8kBTc=π [51], which has been
discussed also in spin-1 superfluids [52]. This particular
topological transition takes place also at the boundary of
the HF and IF (or paramagnetic) phase [Fig. 4(c)], where it
is related to the Uð1Þ=Z2 rotation around Pz

þ mentioned
above. This universal jump is associated with the unbinding
of half-vortex pairs in the (Pxþ,P

y
þ) plane.

Let us comment briefly on the limit of H ¼ 0. Since the
classical ground state is given by di ¼ ð1; 0; 0Þ, (0, 1, 0),
and (0, 0, 1) for sublattice A, B, and C, respectively, or
SU(3) rotations thereof [25], the symmetry is spontane-
ously broken down to Uð1Þ × Uð1Þ. The fundamental
group π1½SUð3Þ=Uð1Þ × Uð1Þ� is trivial [53] and therefore
there are no vortex-induced finite temperature phase
transitions [49,54]. The tendency of the IF-paramagnetic
line toward ðT;HÞ ¼ ð0; 0Þ corroborates this scenario.
Experimental realization.—A promising way for

realizing the present system is picking up three
nuclear spin components of alkaline-earth(-like) atoms,

e.g., Iz ¼ −5=2;−1=2; 3=2 of 173Yb [11–17], as σ ¼ −1, 0,
1 via the optical pumping. Without introducing overall
imbalance in spin population, one could study the mag-
netic-field (H) effects by applying a state-dependent
potential gradient, say, in the x direction, Vext

σ ðxÞ ¼ σVx,
which realizes the magnetization process in −Hs < H <
Hs in real space as a function of the local magnetic field
HðxÞ ¼ 2Vx (in the sense of the local density approxima-
tion [55]). Such a potential gradient could be prepared by
the combination of circularly and linearly polarized lights
[17] with a fine-tuning to keep the condition μ1 − μ0 ¼
μ0 − μ−1 ¼ H for the local chemical potentials of each
component. If, alternatively, one uses a real magnetic-field
gradient, closed-shell alkaline-earth(-like) atoms do not
suffer from quadratic Zeeman effects [56] in the present
field range H ∼ J and no fine-tuning is needed. Another,
perhaps more efficient, way is the introduction of a
coherent laser coupling between different spin states
[15,57], since it can create a field term −H

P
i Ŝ

x
i instead

of ĤZ, but all the results presented here remain valid up to a
global spin rotation.
The estimated critical temperature, T=J ≈ 0.14=kB at its

highest value, is a realistic goal for the first observation of
the SU(N ) order by disorder, given that T=J ≈ 0.9=kB has
been achieved in SU(2) systems [58], considering also the
Pomeranchuk cooling effect [14] for many-component
systems and the fact that the specific spin correlations
can be detected from temperatures higher (typically 2–3
times [59]) than the true critical temperature shown in

FIG. 3. Thermal phase diagram obtained by the semiclassical
Monte Carlo simulations. We also mark the critical fieldsHc1 and
Hc2 obtained by the CMFþ S method at the quantum (T ¼ 0)
limit. The dashed lines are the sketches of the phase boundaries
expected from the combination of the semiclassical Monte Carlo
(valid at high temperatures) and CMFþ S (valid at T ¼ 0)
results.

Conversion
for simplicity

(a)

(b)

(c)

FIG. 4. (a) Stiffness ρSzðTÞ along H=J ¼ 2.0, which shows a
universal jump ρSzðTcÞ ¼ 8kBTc=π at the LF-IF transition,
except for a slight finite-size effect. (b) Vortex and antivortex
with half-vorticity ρv ¼ �1=2 in the projected ðQx2−y2 ; QxyÞ
plane. The right-hand panel is a schematic illustration of a
topological half-vortex pair excitation on the background of a
uniform quadrupolar order on, say, sublattice A. (c) Same as in
(a) for ρPz

þðTÞ at the HF-paramagnetic transition along
H=J ¼ 3.5.
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Fig. 3. The formation of the three-sublattice orders can be
observed by the time-of-flight image of the momentum
distribution [58–63], and the IF state would appear as a
spatial plateau in the case of varying potential HðxÞ. The
singlet-triplet oscillation [17,64] should exhibit different
characteristic behaviors for each phase. In addition, the
extension of the quantum-gas microscope technique to
fermionic SUðN Þ systems [65,66] could provide a wealth
of detailed measurements, including the formation of half-
vortices.
A global spin population imbalance [59] indirectly

creates chemical potential differences among the compo-
nents and, in general, an extra term A

P
i Q̂

z2
i has to be

considered in addition to H. Exploring the entire ðH;A; TÞ
space would be an interesting future subject.
Conclusions.—We studied the quantum and thermal

phase transition phenomena of the SU(3) Heisenberg
model under magnetic fields by using the CMFþ S and
semiclassical Monte Carlo methods. We demonstrated that
pure quantum-fluctuation effects stabilize a magnetization
plateau at 2=3 of the saturation in the intermediate range of
the field strength. The uniform scalar nematic order
parameter also forms a plateau at zero value, which, more
interestingly, appears already in the lower-field phase with
no magnetization plateau. The high-field phase exhibits an
unexpected nematic nature stemming from nontrivial par-
tial breaking of Uð1Þ × Uð1Þ symmetry. Moreover, the
strong nematic nature of the low- and high-field phases
gives rise to fractional vortices and antivortices, whose pair
dissociation results in a topological phase transition with
vorticity ρv ¼ 1=2 at the critical temperature.
The above results, together with the calculated critical

temperatures, provide a robust guideline for future experi-
ments with alkaline-earth(-like) atoms. Additionally, the
physics we explored is relevant to solid-state materials with
nearly SU(3) symmetric parameters and, more generally, to
systems with multipolar orders. In solids, a sizable spin-
lattice coupling can in principle lock the quadrupolar orders
to certain directions and lead to clock-type transitions at
low temperatures; this kind of phenomenon is clearly
absent in the cold-atom setting.
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