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Motivated by the recent generalization of the Haldane conjecture to SUð3Þ chains [Lajkó et al., Nucl.
Phys. B924, 508 (2017)] according to which a Haldane gap should be present for symmetric
representations if the number of boxes in the Young diagram is a multiple of three, we develop a density
matrix renormalization group algorithm based on standard Young tableaus to study the model with three
boxes directly in the representations of the global SUð3Þ symmetry. We show that there is a finite gap
between the singlet and the symmetric ½3 0 0� sector Δ½3 0 0�=J ¼ 0.040� 0.006 where J is the
antiferromagnetic Heisenberg coupling, and we argue on the basis of the structure of the low energy
states that this is sufficient to conclude that the spectrum is gapped.
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The role played in the field of quantum magnetism by
Haldane’s prediction that integer spin chains have a gap
while half-odd-integer spin chains do not can hardly be
overemphasized [1,2]. Indeed, ever since this prediction was
confirmed experimentally and numerically, the community
has thought differently about antiferromagnets, and the
actual value of the spin (and not simply its length as a
measure of quantum fluctuations) has become a defining
parameter along with the dimensionality of space, the
topology of the lattice and the isotropy of the couplings
[3–11]. With the progress made in ultracold fermionic
experiments [12–23], the SUðNÞ cousins of the SUð2Þ
Heisenberg model have become the focus of a lot of
attention, and quite naturally the question of whether and
how Haldane’s conjecture can be generalized has been
addressed by many authors [24–31]. The generalization
of the Affleck-Kennedy-Lieb-Tasaki (AKLT) construction
has proven to be a very useful guide in predicting which
model may or may not be gapped, as well as the concept of
spinon confinement [29,32–36]. More recently, Haldane’s
semiclassical derivation of a nonlinear sigma model with a
topological term has been generalized to SUð3Þ chains in the
symmetric representation, and the absence of topological
terms in the action when the number of boxes in the Young
diagram is a multiple of three is a strong indication that there
should be a Haldane gap in that case without any symmetry
breaking [27]. The underlying theory, the SUð3Þ=½Uð1Þ ×
Uð1Þ� flag manifold nonlinear sigma model, is of interest in
itself as a nontrivial generalization of the standard CP2

model. For instance, it has been shown using ’t Hooft
anomaly matching that, when the number of boxes in the
Young diagram is not a multiple of three, the model is
gapless in the IR and is described by a SUð3Þ1 Wess-
Zumino-Witten (WZW) conformal field theory [28,37].

On the numerical front, the presence of a finite gap in the
three-box symmetric SUð3Þ chain, the simplest possible
case where the Lieb-Schultz-Mattis-Affleck theorem does
not apply (or equivalently no ’t Hooft anomaly is present in
the flag manifold nonlinear sigma model), is not at all clear.
In early density matrix renormalization group (DMRG)
simulations, the saturation of the entanglement entropy has
been interpreted as the evidence of a Haldane gap [35]. This
conclusion has been challenged, however, by exact diag-
onalizations (ED) which showed that, if there is a gap, the
correlation length associated with it must be much larger
than that at which the entanglement saturates according to
Ref. [35], suggesting that the saturation of the entanglement
entropy was actually a consequence of the truncation of the
Hilbert space in DMRG [38]. To actually have a chance to
detect the gap, one must clearly study much longer chains,
and keep far more states. This is a real challenge because it
is not known a priori how long the chain will have to be,
and how many states will have to be kept. As for SUð2Þ
with spin S, this length scale is expected to increase
exponentially with the number of boxes in the Young
diagram, but since the gap has never been calculated for any
irreducible representation (irrep), the prefactor is not
known, and an estimate of the length is not available.
In this Letter, we have taken on this challenge, and have

developed a DMRG code in the basis of standard Young
tableaus (SYTs) that allows one to take advantage of the
full SUðNÞ symmetry, and to keep the equivalent of a huge
number of states without increasing too much the size of
the variational space [5,6]. This has allowed us to obtain
definitive numerical evidence that the spectrum is gapped,
and to come up with an estimate Δ½3 0 0�=J ≃ 0.04 for the
gap in the ½3 0 0� sector, where J is the antiferromagnetic
coupling. Given the extremely small value of this gap,
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comparable to that of SUð2Þ chains for spin S ¼ 3 for
which the correlation length ξ ≃ 637, it is clear a posteriori
that there was no chance to detect it in the early attempts
with standard DMRG or ED, and that it will be very
challenging to look at cases with a larger number of
boxes [9].
The Hamiltonian of antiferromagnetic SUðNÞ

Heisenberg chains can be written as

H ¼ J
X

i

XN

α;β¼1

Sαβ
i Sβα

iþ1; J > 0; ð1Þ

where the generators Sαβ satisfy the usual SUðNÞ commu-
tation relations ½Sαβ;Sμν� ¼ δμβSαν − δανSμβ. For the ten-
dimensional symmetric irrep of SUð3Þ represented by a
Young diagram with three boxes in the first row,

[39], it can be written equivalently as

H ¼ 2J
X

i

Ti · Tiþ1; ð2Þ

where Ta
i ; a ¼ 1;…; 8 are ten-dimensional Hermitian

traceless matrices representing the generators of suð3Þ
and are the exact analogues of the suð2Þ spin operators Sx,
Sy, and Sz (see Supplemental Material [40] for details).
To reach long enough chains, the only option is to use

DMRG with open boundary conditions. In this case, edge
states are expected to be present, however. This is best
understood by looking at the AKLT version of the model
with a biquadratic interaction [40],

HAKLT ¼ 5J
X

i

�
Ti · Tiþ1 þ

1

5
ðTi · Tiþ1Þ2 þ

6

5

�
; ð3Þ

for which an exact ground state can be constructed [47].
There are different ways of constructing this wave function,
but the most economical one consists in writing the irrep
½3 0 0� as a symmetrized product of two eight-dimensional
adjoint irreps ½2 1 0�, and to make singlets with adjoint re-
presentations on neighboring sites, as illustrated in Fig. 1(a)
[48]. This implies that there are edge states in the adjoint
representation. Accordingly, the spectrum of a finite chain
will have low-lying states corresponding to all the repre-
sentations appearing in the product of two adjoint repre-
sentations and given in Fig. 1(b). This is inconvenient for
two reasons: the bulk gap does not correspond to the first
excited state, and the coupling between the edge states
creates long-range entanglement that makes the conver-
gence of DMRG much more difficult. To overcome this
problem, and following what has been done for SUð2Þ spin
chains, we have added an adjoint representation at each end
of the chain, with a positive coupling to ensure that it forms
a singlet with the edge state [7,49–52]. The precise value of
the coupling is not important and the simulations have been
done with a coupling equal to J [40].

The DMRG code we have developed is an extension of
the code used by two of the present authors to study SUðNÞ
chains in the fundamental representation and which
builds on previous developments for exact diagonali-
zation [38,53–55]. It is based on the formulation of the
Hamiltonian in terms of permutation operators [40,56] and
on the basis of SYTs. This code does not require knowing
the SUðNÞ Clebsch-Gordan coefficients but relies on the
subduction coefficients of the symmetric group [40,57]. We
are currently limited to the calculation of the subduction
coefficients when the outer multiplicity is one [55].
Technically this means that we cannot diagonalize the
Hamiltonian in sectors characterized by certain SUðNÞ
symmetry, such as the adjoint representation ½2 1 0�, to
which the first excited state belongs according to ED on
small chains [40]. We can, however, diagonalize the
Hamiltonian in the singlet sector, which is the irrep of
the ground state whatever the number of sites thanks to the
adjoint edge irreps, and also in the symmetric irrep
½3 0 0� [58].
In our DMRG algorithm, the parameter which mainly

controls the accuracy is m, the total number of SYTs kept at
each step. Each SYT represents a class of wave functions
living in the Hilbert space of the half-chain, with the same
properties under the action of permutations, but with differ-
ent SUðNÞ weights, so that the color degrees of freedom are
factorized out by the use of SYTs [40,53,55]. The complex-
ity of our algorithm is then dictated by the diagonalization of
the superblock Hamiltonian of dimension m2. In this work
we take m to be as large as m ¼ 16 000: the discarded
weight is then less than 10−7 in the singlet sector and less
than 10−5 in the ½3 0 0� sector [40]. This gives an accuracy
equivalent to the one obtained with over 860 000 states in a
code which does not keep track of the SUðNÞ symmetry.
Our main results are summarized in Fig. 2.
Two strategies have been used to extract information

about the gap. The first one follows closely the paper of
Schollwöck et al. about the spin-2 chain [50]. For a given
number of sites, the energies in each sector are extrapolated
as a function of the discarded weight [40]. The resulting
gap curve remains linear for the largest system sizes, which
shows that the size beyond which this curve should bend if

(a)

(b)

FIG. 1. (a) SUð3Þ AKLT state for the physical three-box
symmetric irrep at each site. An ellipse denotes the projection
of two adjoint representations onto the physical three-box
symmetric irrep. The thick lines joining neighboring sites
represent singlets made out of two adjoint irreps. (b) Decom-
position of the tensor product of two adjoint representations.
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there is a gap has not been reached yet. However, and most
importantly, this linear curve extrapolates to a finite value.
If the system was critical, this curve should extrapolate to
zero. In fact, as noted by Schollwöck et al., the extrapolated
value is a lower bound of the gap. Qualitatively, this is the
most important result of the present Letter: the spectrum of
the three-box symmetric SUð3Þ chain is gapped. To get an
upper bound, the curvature is assumed to develop for
systems immediately larger than the largest system for
which we could extrapolate the finite-m results, and we
plot a parabola tangent to the gap curve for the largest
system size with zero slope in the limit of 1=Ns → 0.
The intersection of this parabola with the vertical axis is
the upper bound. This analysis leads to the estimate
Δ½3 0 0�=J ∈ ½0.034; 0.046�.
The other strategy is inspired by the investigation of the

Haldane gap in spin-1 and spin-2 chains by Tatsuaki [52]:
for a fixed m, the gap goes through a minimum as a
function of the size. The value at the minimum is an
estimate for the gap for a given m, and this estimate can be
extrapolated as a function of the discarded weight, see inset
of Fig. 2. The results for SUð3Þ appear to follow very
accurately a power law with exponent γ ¼ 0.47, and the
extrapolated value Δ½3 0 0�=J ≃ 0.040 is in good agreement
with the above bounds.

Note that since the discarded weight stops increasing for
a given m for sufficiently long chains, one can also extract
the ground state energy per site in the thermodynamic limit
by extrapolating the saturated energy per added bond with
respect to the saturated discarded weight [7]. We obtain
ϵ=J ¼ −2.176 397 3ð2Þ [40].
As a further check of the existence of a finite gap in the

Heisenberg chain, we have studied the evolution of the gap
between the AKLT point, Eq. (3), and the Heisenberg point
Eq. (2). At the AKLT point the correlation length is given
by ξ ¼ 1= ln 5 ≃ 0.62 [48]. It is very short, and accordingly
the gap is expected to be quite large. Indeed using the same
analysis as in Fig. 2 we extract the AKLT gap, Δ½3 0 0�=J ∈
½0.970 705; 0.970 719� using no more than m ¼ 2000 states
[40]. Away from the AKLT point the gap decreases
smoothly to the value we found at the Heisenberg point,
as shown in Fig. 3.
In view of the conflicting results between the early

DMRG results [35] and the ED results on systems up to 12
sites [38], we have investigated the entanglement entropy,
and we have extracted the central charge using the
Calabrese-Cardy formula [59]. For systems as large as
300 sites, the entanglement entropy still has a significant
curvature for m large enough, as can be seen in Fig. 4, and
the finite size estimate of the central charge is not
negligible, but it is clearly below the value c ¼ 2 for the
WZW SUð3Þ1 universality class, the only alternative to a
gapped spectrum [60]. Moreover, the results are consistent
with a vanishing value in the thermodynamic limit, as
expected for a gapped system.
So there is ample evidence that there is a gap in the

½3 0 0� sector of the three-box symmetric SUð3Þ chain. Let
us now discuss the implications of this result for the low-
energy spectrum of the model. This discussion relies on
two propositions: (i) There are five branches of bulk
elementary excitations belonging to four irreps, including
½3 0 0�; (ii) The presence of a finite gap in any of these
irreps, and in particular ½3 0 0�, implies that there is also
one in all other irreps, and hence the spectrum is gapped.
(i) The presence of five branches of bulk elementary

excitations is best understood by looking at the ground state
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FIG. 2. Gap from the singlet sector to the symmetric ½3 0 0�
sector versus inverse chain length for different values of the
number m of states kept. The inset shows a power-law fit with
exponent γ ¼ 0.47 of the minimum of each finite-m curve,
denoted by a black diamond in the main plot, as a function of
the total discarded weight ηtot, which is dominated by the
discarded weight in the ½3 0 0� sector [40]. The extrapolated
value, shown with a blue diamond, falls approximately in the
middle between our lower and upper bounds of the gap, denoted
by red squares.
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FIG. 3. Gap from the singlet sector to the symmetric
½3 0 0� sector of the interpolation Hamiltonian Hλ ¼
ð1 − λÞHAKLT þ λH; λ ∈ ½0; 1�.
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of the AKLT model, which has singlets on every bond and
which is pictured in Fig. 1(a). To create a bulk excitation
one needs to break one singlet, liberating an adjoint irrep on
each side of the broken singlet. These adjoint representa-
tions can then recombine according to Fig. 1(b) to form five
excited states belonging to the ½2 1 0� (two states), ½3 0 0�,
½3 3 0�, and ½4 2 0� irreps [61].
(ii) The presence of a gap in a sector α implies that there

is also a gap in another sector β if, by combining two or
more β excitations, one can construct a state that belongs to
the α sector. Now, the symmetric irrep ½3 0 0� appears in the
product of two adjoint irreps, as well as in that of two
½3 3 0� or two ½4 2 0� irreps. Thus, the presence of a gap in
the ½3 0 0� sector implies that there is a gap in all other
sectors of elementary excitations, in agreement with addi-
tional results we have obtained for the ½3 3 0� irrep [40],
hence that the spectrum is gapped. This discussion implies
that there are actually four Haldane gaps Δα corresponding
to the four irreps α ¼ ½2 1 0�; ½3 0 0�; ½3 3 0�; ½4 2 0�, and
that they must satisfy Δ½2 1 0�;Δ½3 3 0�;Δ½4 2 0� ≥ Δ½3 0 0�=2.
Note that any of the irreps of the elementary excitations can
be obtained by combining two or more excitations of the
other irreps, leading to other inequalities, and the presence
of a gap in any of these irreps is a necessary and sufficient
condition for a gapped spectrum.
We can actually prove that these inequalities are strict in

the case of the AKLT model in Eq. (3) because the lowest

excitation in the sector ½3 0 0� is not a composite one.
Indeed, if it were, the bond energy on a finite chain should
show a double peak structure, as observed in the spin-2
sector of the spin-1 chain [40,62], and it does not, as clearly
demonstrated by DMRG results on a 60-site chain [40].
To summarize, using finite-chain DMRG simulations

with full SUðNÞ symmetry, we have obtained clear numeri-
cal evidence that the spectrum of the three-box symmetric
SUð3Þ chain is gapped, in agreement with field theory
arguments, and we have estimated the gap in the ½3 0 0�
sector to beΔ½3 0 0�=J ¼ 0.040� 0.006. The smallest gap is
at least half this gap, hence bounded from below by 0.017J
(half the lower bound of Δ½3 0 0�), and at most 0.046J (the
upper bound of Δ½3 0 0�). These bounds point to a very large
correlation length of a few hundred sites.
Finally, let us comment on the possible experimental

implementation of this model. Fermions with an SUð3Þ
degree of freedom can be obtained with 87Sr or 173Yb atoms
after selecting three out of the ten respectively six nuclear
states [16,63,64], and protocols are well documented to
implement irreps with up to two columns [15]. Building on
Hund’s rule that allows one to realize large spins with spin-
1=2 electrons, a possible route to implement a symmetric
irrep with three boxes could be to create a Mott insulating
phase by loading three fermions in different orbitals of the
same anharmonic trap since the contact interactions
between the fermions is expected to lead to a ground state
which is antisymmetric in orbital degrees of freedom and
symmetric in color SUð3Þ space [65].
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