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For most chiralities, semiconducting nanotubes display topologically protected end states of multiple
degeneracies. We demonstrate using density matrix renormalization group based quantum chemistry tools
that the presence of Coulomb interactions induces the formation of robust end spins. These are the close
analogs of ferromagnetic edge states emerging in graphene nanoribbons. The interaction between the two
ends is sensitive to the length of the nanotube, its dielectric constant, and the size of the end spins: for
S ¼ 1=2 end spins, their interaction is antiferromagnetic, while for S > 1=2, it changes from antiferro-
magnetic to ferromagnetic as the nanotube length increases. The interaction between end spins can be
controlled by changing the dielectric constant of the environment, thereby providing a possible platform for
two-spin quantum manipulations.
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Introduction.—Topological insulators represent unique
states of matter, and besides their theoretical appeal, they
hold promise for revolutionizing quantum computation,
spintronics, and thermal electrics [1–3]. While their insu-
lating bulk does not differ significantly from that of a
simple band insulator, their topological character is
manifested by the appearance of emergent surface and
edge states, frequently exhibiting unusual physical
properties. Probably the best known incarnation of a
topological state is the edge state in the Su–Schrieffer–
Heeger (SSH) model [4] describing the dimerization of
polyacetylene. In this case, the dimerized phase is a
topological band insulator, and correspondingly, at the
edges of the polyacetylene chain or at topological defects
separating different dimerized phases, midgap bound states
and corresponding local spin excitations emerge [5,6].
Although nanotubes have continuously been the focus of

extremely intense research for more than two decades now
[7–16], surprisingly, it has been discovered only recently
that most insulating carbon nanotubes also belong to the
class of topological systems. As a consequence, they
should possess midgap states [17–19] quite similar to those
found in the SSH model. Quite astonishingly, as we discuss
below, the number and character of these midgap states is
exclusively determined by the chirality of the nanotube, and
in most nanotubes, several end states are predicted to
appear at each end of the tube. However, in a neutral and
noninteracting nanotube, all these states would be almost

degenerate, and therefore they are expected to be most
sensitive to interaction effects.
In this work, we focus our attention to these interac-

tion effects and demonstrate that—in the presence of
interactions—these topologically protected end states
behave in many ways as spontaneously formed quantum
dots. In particular, interactions lead to spin formation and
tend to align spins ferromagnetically at each end of the
nanotube [20–23], thereby producing end spins of size

S1 ¼ S2 ¼
Nedge

2
; ð1Þ

with Nedge denoting the total number of topologically
protected midgap states at each end [see Fig. 1(a)].
Depending on chirality, Nedge can be quite large for many
nanotubes, implying the appearance of surprisingly large
end spins, paralleling in many ways ferromagnetic edge
states observed in graphene nanoribbons [24–29]. The two
end spins then couple to each other via an exchange
interaction that, in the absence of spin-orbit coupling,
takes on a simple form:

Hexch ¼
1

2
JeffS1S2 ð2Þ

The sign and strength of the exchange interaction here turns
out to depend sensitively on the length of the nanotube as
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well as on its chirality and the dielectric constant of its
environment. Spin-orbit coupling is not expected to influ-
ence spin formation. It will, however, lead to some degree
of exchange anisotropy and also induce local spin anisot-
ropies. As a result, the SUð2Þ degenerate spin multiplets are
expected to split, and for long nanotubes the end S > 1

2
spins will behave rather as coupled Ising spins.
Hamiltonian.—In this work, we use a tight binding

approach to describe interacting nanotubes [30] and
express the Hamiltonian as

H ¼ −
X

s

X

r;r0
tðr − r0Þc†sðrÞcsðr0Þ

þ 1

2

X

r;r0
Vðr − r0Þ∶nðrÞ∶∶nðr0Þ∶: ð3Þ

Here c†sðrÞ creates an electron with spin s at the pz orbital
of a carbon atom at a position r. The hopping matrix
elements tðr − r0Þ describe hopping between nearest neigh-
bor and next nearest neighbor orbitals. They incorporate
curvature effects [31] and also can be generalized to include
spin-orbit effects neglected here [32]. The second term in
Eq. (3) accounts for the long-ranged Coulomb interaction
between local charge fluctuations on the nanotube

VðrÞ ¼ e2

ϵ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ α2

p ; ð4Þ

with U0 ¼ 11.3 eV and α ≈ 0.127 nm=ϵ a short distance
cutoff, and ϵ the dielectric constant [33]. Densities in
Eq. (3) appear in a normal ordered form: nðrÞ∶≡P

s½c†sðrÞcsðrÞ − 1=2�, thereby measuring deviations from

half filling. In the following, we shall determine and
analyze the many-body ground state and excitation spec-
trum of this Hamiltonian.
Noninteracting nanotubes and topological end states.—

Nanotubes are classified by their chirality, χ ¼ ðn;mÞ,
i.e., the lattice vector C ¼ na1 þma2, along which a
graphene sheet, needs to be rolled up to form the nano-
tube. In this work, we focus on semiconducting nanotubes
with ðn −mÞ mod 3 ¼ �1.
For topological considerations, it is most useful to

consider a perfect and infinite nanotube and use a so-
called helical construction [34,35]. Similar to graphene, the
nanotube possesses two sublattices, A and B. In the helical
construction, one introduces a helical vector H within the
graphene sheet and lines up all atoms of the nanotube along
just d spirals along the direction H, with d defined as the
greatest common divisor of n and m (see Supplemental
Material [36] for details).
Clearly, an infinite nanotube possesses a discrete d-fold

rotational symmetry around the axis of the tube, Cd, and a
“gliding” (helical) translational symmetry along the chain,
as generated by the helical vector H. Correspondingly,
single particle (but also many-body) states can be labeled
by their “angular momentum” μ ¼ 0;…; d − 1 and a
quasimomentum k along the chain, and they are organized
into 2d bands, ϵðμÞ� ðkÞ, with the band index � originating
from the sublattice structure of the nanotube and referring
to bonding (valence) and antibonding (conduction) bands.
Within the tight binding scheme used here, these bands are
associated with d-independent one-dimensional chains,
each giving rise to one conduction and one valence band
and describing the motion of electrons with a given
“angular momentum” μ [see Fig. 2(c)]. Interestingly, each
of these bands possesses a topological winding number,
wðμÞ [18]. Non-zero winding numbers imply the presence of
topologically protected end states [19,37,38]. Remarkably,
we can express the total number of end states at each end of
a semiconducting tube in a closed form just in terms of the
nanotube’s chirality:

Nedge ¼ 2

�
n −m
3d

�
þ 3

�
dþ 1

3

�
þ 2ΘðdÞ

−
��

dþ 1

3

�
þ ΘðdÞ

�
Θ
�
n −m
d

�
; ð5Þ

where ΘðxÞ ¼ ðxþ 1Þ mod 3 − 1 is a modified modulo
function taking values 0 and�1, and b…c denotes the floor
function. In Fig. 2(b), we display Nedge as a function of the
chirality of the nanotubes. White squares indicate metallic
tubes, while colored ones refer to semiconducting tubes.
Clearly, most of the tubes are semiconducting, and the vast
majority of semiconducting tubes possess topological end
states, typically several ones. For zigzag tubes with
chirality ðn; 0Þ, e.g., the number of end states increases
linearly with the circumference of the tube, Nzigzag

edge ≈ n=3.

(a)

many-body 
spectrum

non-interacting 
spectrum

(b) (c)

FIG. 1. (a) Topologically protected spins are formed at both
edges of most semiconducting nanotubes. (b) Band structure of a
semiconducting nanotube in the absence of interactions. Topo-
logical end states (red lines) appear in the gap. (c) Many-body
spectrum at finite interaction. For ferromagnetic end spin cou-
pling, the ground state has a total spin ST equal to the number of
edge states Nedge. Spin excitations appear at low energies due to
coupling between end spins.
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Remarkably, as our tight binding calculations also
demonstrate, these end states are rather robust and not
very sensitive to the form of the ending of the nanotube as
long as it terminates in a minimal edge, i.e., with the
minimal number of missing atoms and dangling bonds per
period [39]. This is due to the fact that end states extend
over many lattice sites, both along the circumference and
along the width of the nanotube, hence defects at the end of
the nanotube that break sublattice symmetry or the Cd
symmetry mix end states, but only slightly. Note that end
states are not robust against sublattice-selectively remov-
ing or adding some atoms at an end: this removes or creates
end states, and alters the size and interaction of the end
spins, accordingly. However, such modifications of the
nanotube break the minimal edge condition, and are
therefore energetically unfavorable [39].
Interacting nanotubes.—To perform numerical calcula-

tions, we first construct a finite nanotube and diagonalize
the noninteracting part of the Hamiltonian Eq. (3) to find its
eigenstates ϕαðrÞ and the corresponding eigenenergies, ϵα,
and express the interaction term within this basis. Normal
ordering needs to be treated with special care in this
process. To treat nanotubes of reasonable length,
L ≈ 40 nm, we restrict the many-body calculations to just
about a hundred active states from the valence and con-
duction bands with energies jϵαj < Λ ≈ 5Δ, with Δ the
band gap of the noninteracting infinite nanotube. Then we
apply a density matrix renormalization group (DMRG)
based approach adopted to Hamiltonians with arbitrary
long-ranged two-body interactions [40–42] to determine
the ground state and low lying excitations of the nanotube.
In this procedure, we useUð1Þ × Uð1Þ symmetries, i.e., we

fix the excess charge Q on the nanotube and the z
component of the total spin, SzT . In practice, the computa-
tional basis is further optimized using fermionic mode
transformation [43].
As sketched in Fig. 1, end spins manifest in the form of

low energy subgap excitations, which can be described by
the effective Hamiltonian, Eq. (2). The many-body spectra
observed reveal consistently the formation of end spins
with S1;2 ¼ Nedge=2, coupled to each other. In the absence
of spin-orbit coupling, this interaction is SUð2Þ symmet-
rical, and the many-body spectrum consists of multiplets
with total spin ST ¼ 0;…; Nedge.
The alignment and size of the electron spins at the ends

of the nanotubes can be easily understood. In a topological
nanotube, 2Nedge spin degenerate states are split from the
conduction and valance bands and form the midgap states
and are therefore populated by 2Nedge electrons in a neutral
(half-filled) tube. End states are thus half filled in a neutral
nanotube. The spatial extension of these localized end states
is roughly ξ0 ∼ ℏc=Δ ∼ R, with c the Fermi velocity and R
the radius of the nanotube. Electrons confined on these states
therefore interact strongly with each other, and moving one
electron from one end of the tube to the other would cost an
energy ∼EC ∼ e2=ðϵξ0Þ ∼ e2=ðϵRÞ. Therefore, to minimize
their Coulomb energy, Nedge electrons go to each end of the
tube. Moreover, since all these single particle levels are
degenerate, and wave functions on one end overlap with
each other, electrons at one end followHund’s rule and align
their spins to minimize their interaction, thereby yielding a
composite spin, S1;2 ¼ Nedge=2 [Eq. (1)].
We have analyzed the excitation spectra of dozens of

nanotubes and verified Eq. (1) numerically in the presence
of Coulomb interaction for all nanotubes listed in Fig. 2(b).
In these simulations, we have observed end spins as large as
S1;2 ¼ 5=2 and corresponding ground state spins as large as
ST ¼ S1 þ S2 ¼ 5. According to Eqs. (1) and (5), for
appropriate chiralities and larger nanotube radii, the total
emergent spin can largely exceed these values. The ground
state spin of the nanotube is determined by the exchange
coupling Jeff between the end spins. Being generated by
tunneling between the topological end states, this coupling
is expected to fall off exponentially with the length of the
nanotube. The coupling Jeff can be readily extracted from
the spin excitation spectrum and is displayed for two
particular nanotubes as a function the nanotube length L
in Fig. 3. On top, we show the results for a (7, 5) nanotube
with Nedge ¼ 1 and corresponding spin S ¼ 1=2’s at the
edges. The coupling is antiferromagnetic and therefore
ST ¼ 0 in this case, irrespective of the length of the
nanotube. As expected, the coupling Jeff decays exponen-
tially with L, reflecting the exponentially localized nature
of the end states.
A completely different behavior is observed, however,

for an (8, 3) nanotube with Nedge ¼ 2, as displayed on the
bottom of Fig. 3. Here we observe an antiferromagnetic
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FIG. 2. (a) Mapping of an infinite carbon nanotube to an
effective 1D ladder-like lattice model with d decoupled chains for
a chirality χ ¼ ð6; 2Þ and d ¼ 2. Arrows indicate hoppings
between carbon atoms. (b) The number of edge states, Nedge,
as a function of the chirality χ ¼ ðn;mÞ. (c) Band structure and
the corresponding winding numbers for a (6,2) nanotube.
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coupling in very short nanotubes with L≲ 5 nm, while in
longer tubes the interaction becomes ferromagnetic and
decays exponentially, as expected.
The behavior shown in Fig. 3 appears to be generic. We

have studied a great number of nanotubes with different
chiralities, and in all nanotubes with Nedge ¼ 1 we find an
antiferromagnetic coupling, while all nanotubes with
Nedge ≥ 2 exhibit an exchange interaction that changes
from antiferromagnetic to ferromagnetic with increasing
nanotube length. As demonstrated in the lower panel, the
precise location of the sign change is sensitive to the
dielectric constant, ϵ, and by appropriate engineering of ϵ,
one can even completely decouple the two end spins. This
mechanism provides a tool to perform quantum manipu-
lations with the end spins.
Charging the end states.—As discussed above, a topo-

logical nanotube behaves to a large extent as a self-
organized double quantum dot system. Whether one can
charge these topological quantum dots and observe the end
states in a direct spectroscopic (tunneling) experiment
depends largely on screening, i.e., the value of ϵ.
Placing an additional electron to the topological states
costs a Coulomb energy of the order of EC ∼ e2=ðϵRÞ,
while adding a delocalized particle to the valence band
needs an energy Δ ∼ ℏc=R. Therefore, for each chirality,

there is a critical value ϵC ∼ e2=ðℏcÞ of the dielectric
constant. For dielectric constants larger than ϵC (strong
screening), electrons and holes added to a neutral nanotube
localize at the end and the topological quantum dots can be
charged, while for smaller dielectric constants (weak
screening) they must go directly to the conduction or
valence band and delocalize along the nanotube.
According to our calculations, this transition happens at

around ϵ ≈ 3, as is displayed in Fig. 4. The inset of Fig. 4
shows the spatial location of an electron added to the
nanotube in terms of the position l along the helix. Clearly,
the added particle is localized on sublattice A at one end,
while it localizes on sublattice B at the other end (in close
similarity with the SSH model). As shown in the main
panel of Fig. 4, the localization length of the added particle
ξ is strongly influenced by Coulomb interactions and
diverges as one approaches the critical value of ϵ. This
localization length should not be confused with that of the
end spins, which remains of the order of R. Close to ϵ≳ ϵC,
the delocalized charges can create a glue between the
end spins.
Closing observations and conclusions.—As we demon-

strated in this work, most carbon nanotubes are topological,
and all topological nanotubes possess interaction induced
end spins residing at the edges of the tube and localized
within a distance ∼ξ0 ∼ R. Being protected by topology,
these naturally formed end spins are robust, are typically
larger than spin S ¼ 1=2, and couple to each other
exponentially weakly in longer nanotubes (longer than a
few nanometers). Their presence may provide a natural
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FIG. 3. Effective exchange interaction Jeff between the local-
ized spins at the two ends of the nanotube as function of its
length. When Nedge ¼ 1; Jeff is always positive, indicating an
antiferromagnetic exchange, while for Nedge ≥ 2 an antiferro-
magnetic to ferromagnetic transition occurs. As the inset shows,
for appropriate nanotube length, the sign of the interaction can be
changed by changing the dielectric constant of the environment.
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FIG. 4. Extension of the wave function of the additional
spectrum as a function of ϵ in a (7, 5) nanotube of length L ¼
30 nm with Nedge ¼ 1. For ϵ < ϵC ≈ 2.5, the added charge
delocalizes along the nanotube, while for ϵ > ϵC the charge is
added to the topological quantum dots (it is delocalized between
them in the ground state). As the coloring indicates, the two end
states live on different sublattices. The localization length of the
added electron diverges as ϵ approaches ϵC.
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explanation for the intrinsic spin formation observed long
ago in encapsulated nanotubes (peapods) [44], and simple
model calculations support that an exponentially weak
ferromagnetic exchange quite naturally explains the
super-Curie behavior reported earlier [45].
The large end spins demonstrated here are the nanotube

analogs of ferromagnetic edge states appearing in graphene
nanoribbons [24,26–29,46]. Indeed, selecting any topo-
logically nontrivial chirality ðp; qÞ with p and q being
relative primes, we can think of nanoribbons of widthW as
nanotubes with chirality ðn;mÞ≡ ðrp; rqÞ and length
L ¼ W, with r taken to infinity. In this limit, the length
of the nanotube remains finite while its radius R is taken
to infinity, thereby yielding nanoribbons closed into a
cylinder. In this limit, the rotational symmetry Cd→∞ yields
a proliferation of topological end states, thus forming a
dispersionless band that is subject to Stoner ferromagnetism.
The sign change of Jeff observed also has its counterpart in
nanoribbons: in close analogy with the sign change of Jeff
observed here, the coupling between ferromagnetic edge
states is observed to change sign, too, from being anti-
ferromagnetic to ferromagnetic as a function of W [28].
Topological nanotubes spontaneously form double dot

devices, which may provide a platform for quantum
computation. As we demonstrated, local probes such as
scanning tunneling microscopy can be used to observe
these “topological quantum dots.”However, to charge them,
the effective dielectric constants must be increased over
some critical value. Therefore, rather then using suspended
nanotubes, nanotubes laid over some tunable dielectrics
would be the most promising candidates for a direct
experimental observation by tunneling spectroscopy.
Another way to detect these protected end states may be
via local optical spectroscopy. Excitonic states, i.e., bound
subgap electron-hole excitations, have been observed by
two-photon spectroscopy in bulk nanotubes [47,48].
Charging the end states and binding a charge carrier of
opposite sign to it should create similar excitonic edge states.
These edge excitons should have a binding energy clearly
distinct from that of the bulk excitons and may be detected
by optically probing the edge of the nanotube in the infrared.
Direct edge state→ valence or conduction band excitations
may also be detected well below the optical gap, Eg ¼ 2Δ.
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