
 

Fast and Universal Kohn-Sham Density Functional Theory Algorithm
for Warm Dense Matter to Hot Dense Plasma

A. J. White and L. A. Collins
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

(Received 6 April 2020; revised 9 June 2020; accepted 15 July 2020; published 31 July 2020)

Understanding many processes, e.g., fusion experiments, planetary interiors, and dwarf stars, depends
strongly on microscopic physics modeling of warm dense matter and hot dense plasma. This complex state
of matter consists of a transient mixture of degenerate and nearly free electrons, molecules, and ions. This
regime challenges both experiment and analytical modeling, necessitating predictive ab initio atomistic
computation, typically based on quantum mechanical Kohn-Sham density functional theory (KS-DFT).
However, cubic computational scaling with temperature and system size prohibits the use of DFT through
much of the warm dense matter regime. A recently developed stochastic approach to KS-DFT can be used
at high temperatures, with the exact same accuracy as the deterministic approach, but the stochastic error
can converge slowly and it remains expensive for intermediate temperatures (<50 eV). We have developed
a universal mixed stochastic-deterministic algorithm for DFT at any temperature. This approach leverages
the physics of KS-DFT to seamlessly integrate the best aspects of these different approaches. We
demonstrate that this method significantly accelerated self-consistent field calculations for temperatures
from 3 to 50 eV, while producing stable molecular dynamics and accurate diffusion coefficients.
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The intermittent nature of warm dense matter (WDM)
and hot dense plasmas (HDP) makes calculation of micro-
scopic properties particularly difficult [1]. The quantum
mechanical interaction of electrons through fermionic
antisymmetry, i.e., Pauli exclusion or electron degeneracy,
is comparable to the thermal energy. Both the electrostatic
interactions and kinetic energies of ions are non-negligible;
while the question of determining “partial charges” on
atoms, and the existence of spatial and temporal correla-
tions between ions or even transient molecular structures,
creates additional difficulty. However modeling these
regimes is critical to a range of systems including planetary
bodies [2–11], brown and white dwarf stars [12–14],
inertial fusion energy [15], and high-intensity high-energy
laser pulse experiments [16].
This necessitates an atomistic, ab initio, and quantum-

mechanical calculation of microscopic properties. For the
cooler side of WDM, Kohn-Sham density functional theory
(KS-DFT) [17] is the gold standard for calculating material
properties [1,18]. However, due to the poor computational
scaling (both in time and memory) of KS-DFTwith temper-
ature, its use is limited to systems typically⪝10 eV. For high
temperatures, more approximate orbital-free DFT [19–22]
or path-integral Monte Carlo (PIMC) methods [23–25],
typically within the fixed node approximation, become the
standard. The cost of PIMC calculations significantly
increases for lower temperatures. Combining these approx-
imations, and KS-DFT, for different parameter spaces has
been successful in generating equation of state data [26,27].

However, extension into time-dependent quantities, i.e.,
electronic response properties, stopping-power, absorption
spectra, conductivities etc., is not possible with PIMC
methods, and highly approximate for orbital-free DFT [28].
Recently, a stochastic alternative (SDFT) to the traditional

deterministic KS-DFT (DDFT) algorithm has been devel-
oped [29,30]. The computational costs and memory scale
linearly with system size, V; the method is nearly trivial to
parallelize and converges to the exact KS-DFT result [31].
Moreover, the computational cost scales inversely to the
temperature, i.e., ∝ V=T rather than cubically as in the
traditional algorithm [30], i.e.,∝ V3T3. FormoderateWDM
to HDP temperatures, roughly from 5 to 40 eV but
dependent on system size and density, neither the SDFT
nor DDFT are sufficiently efficient for long time molecular
dynamics simulations (compared to near-zero temperature
DDFT) with reasonable computational resources. For vol-
ume-averaged quantities, error cancelation leads to sub-
linear scaling with system size, and <1% errors in energies
can be achieved with ≈100 “stochastic orbitals” [31].
Convergence of the electron density or ion forces is more
challenging, especially for ionized systems [32–35].
We present a universal mixed stochastic-deterministic

approach (MDFT), which combines the best aspects of the
DDFT and SDFT algorithms and leverages the physics of
the KS-DFT problem, to achieve faster and more precise
self-consistent field calculations at high temperature. The
approach is based on separation of the eigenspectrum of the
KS-DFT Hamiltonian into a low-energy deterministic and
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high-energy stochastic segments. Like SDFT, converged
MDFT provides the exact same accuracy as converged
DDFT calculations, but MDFT can be much more precise
than SDFT for a given computational time (or faster for a
given precision). Since the SDFT and DDFT are different
linear-algebra techniques solving the same KS-DFT prob-
lem, this generalization is pointedly simpler andmore robust
than merging KS-DFT with a more approximate method,
such as orbital-free DFT or plane-wave electrons [36]. For
example, high energy electrons are still properly orthogonal
to low energy states, preventing overlap with core regions.
We will first describe the computational details, pertinent

to computational time and scaling, of the DDFT and SDFT
approaches. Then, we will detail the algorithm for MDFT.
We will then present tests for the accuracy, precision, and
computational timing of the MDFT algorithm with at a
range of temperatures, from 1 to 50 eV.
In KS-DFT the effective single-particle DFT Hamiltonian

is defined as (all equations in atomic units),

ĤDFT ¼ −∇2=2þ
Z

dr⃗3
ρðr⃗0Þ
jr⃗ − r⃗0j þ V̂xc þ V̂ext; ð1Þ

where ∇ is the gradient operator, ρ is the electronic density,
V̂xc is the exchange-correlation potential, and V̂ext is the
external potential due to the ions or electric fields. The latter
potentials may be local potentials or nonlocal operators.
Within the finite-temperature Mermin-Kohn-Sham theory
[37], the equilibrium electron density is given by

ρðrÞ ¼ TrffðĤDFT; μ; TÞg; with

fðĤDFT; μ; TÞ ¼
2

1 − eðĤDFT−μÞ=T
; ð2Þ

where μ is the electron chemical potential, T is the temper-
ature, and f is the Fermi-Dirac distribution function. In
DDFT the trace is taken over the orbitals,ψs (eigenvectors of
ĤDFT), whereas in SDFT the trace is a taken over stochastic
orbitals, χs [38].
For DDFT, the computational cost is dominated by

eigendecomposition, i.e., solving ĤDFTψa ¼ εaψa. Solving
for ψs can be efficiently achieved for Nψ → Oð100Þ, but for
WDM to HDP temperaturesNψ→Oð1000Þ, withNψ ∝T3=2,
the need to orthogonalize all orbitals leads to the T3 scaling
[30]. The lowest energy orbitals carry the largest contribution
to the density (due to f), but at higher energies, the density of
states grows. For high temperatures, this leads to many
orbitalswith smallf, such that collectively they are important,
but they are increasingly costly to resolve individually.
For SDFT, the computational cost is dominated

by finding the “occupied” stochastic orbitals Xb ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðĤDFT; μ; TÞ

q
χb. This involves the Chebychev expan-

sion of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðĤDFT; μ; TÞ

q
, which converges ∝ Ecut=T [30].

Ecut is the cutoff energy for the plane-wave basis. The
dominant operation is then the application of ĤDFT to an
intermediate vector, ϕ → ĤDFTϕ, which is also a signifi-
cant operation in DDFT. For periodic plane-wave systems
considered here, this operation scales nearly linear as
NgLnðNgÞ due to fast-Fourier transforms (FFT), where

Ng is the number of plane waves (∝ the volume and E1=2
cut ).

For moderate WDM temperatures, the Chebychev expan-
sion still requires many terms [30]. The stochastic orbital is

given by χb ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nχdr⃗3

q
ei2πθbðr⃗Þ, where θbðr⃗Þ is an

independent random number between 0 and 1. It can
naturally be expressed as a linear combination of
ψs: χbðr⃗Þ ¼

P∞
a cb;aðθ⃗bÞψaðr⃗Þ.

The MDFT generalization of the DDFT and SDFT
approaches can be realized by doing the following:
(1) generate and store χs (or random number seeds).
(2) Begin self-consistent field (SCF) loop: generate poten-
tials in Eq. (1) from trial ρ. (3) Efficiently solve for a
reduced set of ψs using an appropriate eigensolver (con-
jugate gradient [39], LOBPCG [40], Chebychev Filtering
[41]). (4) Project the ψs out of the χs to form χ̃s:

χ̃b ¼ χb −
XNψ

a

cb;aψa: ð3Þ

(5) Find the “occupied” χ̃s: X̃b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðĤDFT; μ; TÞ

q
χ̃b.

(6) Solve for the new density and iterate until SCF loop
(μ, ε, ρ) converges:

ρðr⃗Þ ¼
XNψ

a

fðεa; μ; TÞjψaðr⃗Þj2 þ
XNχ

b

jX̃bðr⃗Þj2: ð4Þ

(7) Use the mixed density matrix:

ρðr⃗; r⃗0Þ ¼
XNψ

a

fðεa; μ; TÞψaðr⃗Þψ�
aðr⃗0Þ

þ
XNχ

b

X̃bðr⃗ÞX̃�
bðr⃗0Þ; ð5Þ

or the mixed identity operator

Î ¼
XNψ

a

jψaðr⃗Þihψaðr⃗Þj þ
XNχ

b

jχ̃bðr⃗Þihχ̃bðr⃗Þj ð6Þ

in expressions for most other observables. Proof of Eq. (6)
is shown in the Supplemental Material [42]. In step 6,
the chemical potential is found by iteratively solving
Ne ¼

R
dr⃗3ρðr⃗Þ≡ Ne, were Ne is the number of electrons

in the simulation volume [30]. When solving for updated μ,
as well as the electronic entropy, only the coefficients of the
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Chebyshev expansion need to be recalculated, using the
Chebyshev moments [30]. If Nψ ¼ 0 or Nχ ¼ 0, then the
algorithm reduces to the standard SDFT or DDFT algo-
rithms, respectively.
To illustrate the partitioning of the eigenspectrum,

we show (Fig. 1), the density of states (DOS),
Trf½γ=π�=½ðE − ĤDFTÞ2 þ γ2�g, and the occupied DOS,
Trf½fðĤDFT; μ; TÞγ=π�=½ðE − ĤDFTÞ2 þ γ2�g, for diamond
structure carbon at an electron temperature of 10 eV. DDFT,
SDFT, andMDFTare compared. Simulation parameters are
given in the Supplemental Material [42]. The results from
the different methods are nearly indistinguishable until the
DDFT DOS reaches its maximum eigenvalue at 122 eV.
The deterministic contribution to the MDFT DOS has been
solid filled (the artificial tail from finite γ is cut off at the
maximum deterministic eigenvalue of ψs at 12.81 eV).
The acceleration of the SCF cycle by MDFT is shown in

the top panel of Fig. 2(a), where DDFT, SDFT, and MDFT
are compared. For the comparisonwe draw a single snapshot
taken from an orbital-free DFT calculation. Any reasonable
snapshot will due for this comparison of algorithms.
Simulation parameters are given in the Supplemental
Material [42]. We utilize the PBE GGA exchange correla-
tion functional [43]. In principle, finite-temperature effects
should be accounted for in the exchange correlation func-
tional [44–47], however here we are interested only in
comparing algorithms so PBE will serve as well as any
other GGA.
All KS-DFT calculations are using our developmental

DFT code with two-level band and FFT parallelism [48]

(using FFTE library [49]), LOBPCG [40] for the eigende-
composition, the LibXC package [50], and OpenMPI [51].
SDFT and MDFT calculations are averaged over 20 runs.
For SDFT, Nχ ¼ 120 yielding ∼0.5% relative standard
error in the free energy. For DDFT Nψ was chosen to be
high enough to ensure the smallest occupation was rea-
sonably converged, fðεNψ

Þ < 0.0002. Table I lists the
DDFT Nψ and the MDFT NψnNχ. By adjusting Nψ and
Nχ , while still achieving the same or lower standard
deviation in the free energy, the MDFT SCF time is
reduced compared to both the SDFT and DDFT in
intermediate temperatures (between 3 and 50 eV).
The accuracy and precision of the MDFT and SDFT

results are demonstrated in the middle and bottom panel
of Fig. 2(a). The relative difference between the average
free-energy SDFT and MDFT results and the reference are
shown in the middle panel with error bars �1 standard
deviation (over the 20 calculations). The reference result is
DDFT for 1–30 eV. For 50 eV, the comparison to the
highly converged MDFT (Nψ ¼ 4000 and Nχ ¼ 400) is
shown by solid line and markers, while comparison to an
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FIG. 1. (Top) Density of states (DOS) of 64 atoms diamond
structure carbon (3.51 g=cc) at 10 eV. See text for explicit form.
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and MDFT deterministic component (solid fill under) are shown.
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FIG. 2. Single disordered carbon snapshot 3.51 g=cc. (a) Top:
comparison of SCF calculation times on 512 threads. See text for
parameters. Middle: comparison of relative error in free energy
(A). Bottom: comparison of electron chemical potential (μ).
0 shown as an eye guide. (b) Average standard deviation of
forces (solid lines, filled markers) and SCF time on 256 threads
(dashed lines, open markers) for different Nχ (x axis) and Nψ .
Nψ ¼ 0, 128, and 256 are shown as black circles, red diamonds,
and blue squares, respectively.
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unconverged DDFT, fðεNψ
Þ ¼ 0.0018 at Nψ ¼ 4200, is

shown with open line and markers. The reference values are
shown in Table I. Small accuracy differences seen in SDFT
(0.25%) are due to nonlinear effects (DFT Hamiltonian
dependence on density), however the accuracy converges
rapidly, as 1=Nχ , compared to precision, (1=

ffiffiffiffiffiffi
Nχ

p
) [29].

These nonlinear effects on accuracy are reduced for MDFT.
The bottom panel of Fig. 2(a) plots the difference of the
averages and reference (also listed in Table I) electronic
chemical potentials from the same calculations. In addition
to KS-DFT calculations, we also compare an orbital-free
DFT [52–54]. These comparisons verify that the different
KS-DFTs converge to the same results, which we already
expect analytically.
As previously mentioned, convergence of the electron

density and concurrently the nuclear forces requires sig-
nificantly more stochastic orbitals than the volume aver-
aged energies. In Fig. 2(b), we show for T ¼ 10, 20, and
40 eV the standard deviation in the force on the nuclei,
calculated from 10 repeated calculations of SDFT and
MDFT for the same snapshot used in Fig. 2(a) and then
averaged over all nuclei and directions. Calculations are the
same parameters and system as above. In general, the
random force error can be reduced by either accounting for
more electron density deterministically (increasing Nψ ) or
increasing the number of stochastic orbitals Nχ . For the
latter the error goes∝ N−0.5

χ , while for the former it depends
on μ and T. There are diminishing returns for increasingNψ

when the maximum eigenenergies become significantly
larger than μ. μ is typically becoming more negative for
higher temperatures (at a fixed density), while the cost of
calculating occupied stochastic orbitals is decreasing.

This leads to a general “rule” that as temperature
increases then the value of increasing Nχ compared to
Nψ goes up. Some points show higher than expected SCF
times due to more SCF cycles being required. It should be
noted that at 50 eV the stochastic algorithm becomes so
efficient, and the lowest-energy orbitals start to become so
depopulated, that calculating even the lowest energy
deterministic orbitals loses its advantage. However, if we
pushed temperatures to Oð100–1000Þ of eV, where the 1s
core electrons of the carbon start to be ionized, we would
need to change from a four-electron pseudopotential [55] to
an all(6)-electron pseudopotential. MDFT would again
become advantageous over SDFT since the core electrons
will be highly occupied. Thus, the benefits of MDFT over
SDFT should exist until the atoms become fully ionized.
Beyond these trends, the details of whether one should
target higherNψ orNχ will also depend on the density, Ecut,
and the system size. Larger systems will naturally favor
higher Nχ to Nψ ratios, since the stochastic algorithm is
absolutely linear scaling, while the deterministic will only
be nearly linear scaling for sufficiently small Nψ .
To verify that the sufficiently small stochastic fluctuations

do not affect bulk transport calculations, we have calculated
the self-diffusion coefficient [19,56] of carbon at twoWDM
conditions, 10 g=cc density with 10 eV temperature, and
3.51 g=cc at 5 eV. Simulation parameters are given in the
Supplemental Material [42]. The coefficients and corre-
sponding velocity autocorrelation functions (VACF) are
shown in Fig. 3. We compare a fast MDFT calculation with
Nψ ¼ 128 and Nχ ¼ 16, a (∼2x) slower SDFT calculation
withNχ ¼ 64, and a fast SDFT calculation withNχ ¼ 16 to
DDFT. Additional MDFT calculations and comparisons to
VASP [57] are shown in the Supplemental Material [42]. All
self-diffusion coefficients,D (shown in the key of Fig. 3with
units of 0.001 cm2= s) agree within our estimated error
based on the length of the trajectories, with the exception of

TABLE I. System is 3.51 g=cc disordered carbon. Number of
orbitals and reference values for free energy per atom (A) and
electron chemical potential (μ), corresponding to Fig. 2(a). *Nψ

insufficient for converging calculation. Lower table shows the
highly converged MDFT used as alternative reference.

MDFT DDFT DDFT DDFT

T (eV) Nψ∶Nχ Nψ A (eV) μ (eV)

1 136∶4 192 −123.867 13.007
3 128∶8 336 −126.556 12.808
5 112∶8 512 −131.579 12.250
10 112∶8 1024 −152.934 9.080
15 96∶16 1600 −184.592 3.650
20 80∶32 2400 −224.401 −3.533
30 64∶40 4200 −322.955 −21.917
50 32∶80 4200* −572.859 −69.619

MDFT MDFT MDFT

T (eV) Nψ∶Nχ A (eV) μ (eV)
50 4000∶400 −574.466 −70.134
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FIG. 3. Velocity autocorrelation function from DDFT (solid
lines), MDFT (dash-dotted line), and two SDFT (dotted and
dashed line): 10 g=cc 10 eV results shown on the right, while
3.51 g=cc 5 eV results are shown on the left. The self-diffusion
coefficients (D, integral of VACF) are shown in the key with units
of 0.001 cm2=s with the estimated error range (see the Supple-
mental Material [42] for full simulation parameters).
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the SDFT with only Nχ ¼ 16. Details of VACF generation
and error estimation are included in Supplemental Material.
Molecular dynamics are performed using the isokinetic
ensemble [58]. These results indicate that the fluctuations
due to stochastic forces in (reasonably converged) MDFT
and SDFTare not significant contributors to the equilibrium
transport properties of WDM. With exception for the
Nχ ¼ 16 SDFT calculation, the fluctuation of the free
energy was not significantly altered by introducing stochas-
ticity. Average and standard deviation in free energies are
shown in the Supplemental Material. These results suggest
that, at these very high temperatures, time averaging over
equilibrium molecular dynamics reduces the effect of the
stochastic force fluctuation, assuming that nonlinear bias is
minimized.
In conclusion, we have developed a universal approach

to solving the Kohn-Sham DFT self-consistent field cal-
culation which can be efficient at any temperature. The
method is sufficient for performing calculation of energies
(equation of state) as well as ion transport self-diffusion
coefficients, and provides significant acceleration com-
pared to purely deterministic or stochastic DFTs. The
performance for viscosity and interspecies diffusion cal-
culations will be examined in the future. Future work will
involve generalization of the approach to TD-DFT, calcu-
lation of electronic transport coefficients, equation of state
and ion transport. This new capability will open a wide
range of calculations, previously unachievable at WDM
conditions.
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