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We investigate the development of mobility inversion and fingering when a granular suspension is
injected radially between horizontal parallel plates of a cell filled with a miscible fluid. While the
suspension spreads uniformly when the suspension and the displaced fluid densities are exactly matched,
even a small density difference is found to result in a dense granular front which develops fingers with
angular spacing that increase with granular volume fraction and decrease with injection rate. We show that
the timescale over which the instability develops is given by the volume fraction dependent settling
timescale of the grains in the cell. We then show that the mobility inversion and the nonequilibrium
Korteweg surface tension due to granular volume fraction gradients determine the number of fingers at the
onset of the instability in these miscible suspensions.
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Instabilities in the invasion of sedimenting granular
suspensions in confined domains are important to natural
and industrial systems ranging from microfluidics to
hydraulic fracturing, and complementary to fluid flows
in porous medium that lead to erosion and rich pattern
formation [1–3]. Gravitational instabilities because of
buoyancy inversion like the Rayleigh-Taylor instability
are well known in such suspensions [4–6]. Less obvious
are pressure-driven instabilities like the Saffman-Taylor
instability [7–9] which arise because of spatial variation in
the granular component which affects the effective viscos-
ity of the medium [10]. In the case of a neutrally buoyant
suspension radially invading a fluid confined between two
parallel plates, it has been shown that the suspension can
break into fingers even when its effective viscosity is
greater than the displaced fluid [11]. The meniscus plays
an important part in this observation as it blocks the further
advance of grains which arrive there in greater proportion
because of shear-induced migration to the faster moving
regions away from the boundaries [12]. The trailing edge
of an accumulating annulus of grains is said to become
unstable [11,12] following a mechanism analogous to
viscous fingering observed in Newtonian fluids [7,13,14].
But the phenomena when a meniscus is absent is unclear, as
for examplewhen the domain is initially flooded by a similar
fluid, and when shear-induced migration is not sufficiently
strong to overcome gravity.
To address Saffman-Taylor-like instabilities in sedi-

menting suspensions, we discuss experiments with granular
suspensions which are injected radially between horizontal
plates filled with a similar miscible fluid. Because of the
addition of the grains, theviscosity of the injected suspension
is effectively higher than the fluidwhich is displaced.We find
that even a small density difference leads the granular
component to sediment and lag behind the interface where

the fluid components meet and mix, leading to an annular
region with lowered mobility. Although the fluids are
miscible and the interfacial tension at equilibrium is zero,
we show that the nonequilibrium Korteweg surface tension
[15] due to volume fraction gradients plays an equivalent
role in determining unstable growth.
Figure 1(a) shows a schematic of the experimental

system consisting of 20 cm wide plates separated by
distance h ¼ 1.15 mm. A noncohesive granular suspension
consisting of sodium chloride, distilled water, and poly-
styrene sphereswith diameter d ¼ 200� 50 μmand density
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FIG. 1. (a) A schematic of the experimental cell consisting of
parallel plates filled with a miscible fluid and the suspension
injection system. Quadrant view of the advancing granular
suspension with ϕg¼0.2 and Q ¼ 0.05 cm3 s−1 at time t ¼ 20 s,
50 s, 100 s, 150 s when ρs ¼ ρd (b), and ρs ¼ 1.07ρd (c). The
granular component appears blue and the fluid component in
the suspension fluoresces green under combined white-blue-
UV lighting. Fingers are observed to develop when ρs ≠ ρd. See
movies in Supplemental Material [16].

PHYSICAL REVIEW LETTERS 125, 054501 (2020)

0031-9007=20=125(5)=054501(5) 054501-1 © 2020 American Physical Society

https://orcid.org/0000-0003-1754-1519
https://orcid.org/0000-0001-9968-8252
https://orcid.org/0000-0001-5827-8943
https://orcid.org/0000-0002-9612-6593
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.054501&domain=pdf&date_stamp=2020-07-29
https://doi.org/10.1103/PhysRevLett.125.054501
https://doi.org/10.1103/PhysRevLett.125.054501
https://doi.org/10.1103/PhysRevLett.125.054501
https://doi.org/10.1103/PhysRevLett.125.054501


ρg ¼ 1.07 g cm−3 is prepared with granular volume fraction
ϕg from 0.05 to 0.30 [16]. The density of the fluid is matched
to ρg by using appropriate salt concentration to ensure that
the grains do not sediment and jam inside the injection
system [18,19]. Thus, the density of the injected suspension
ρs ¼ 1.07 g cm−3 in all our experiments. The plates are
immersed inside a larger reservoir filled with an aqueous
fluid to prevent an air-liquid interface. The density of this
fluid ρd is varied relative to ρs by varying its salt concen-
tration and has a similar viscosity as the fluid component of
the suspension ηf ≈ 1 × 10−3 Pa s at 24 °C. The suspension
is injected through a small hole at the center of the bottom
plate with an injection rateQ and the flow can be considered
to be in the low Reynolds number regime [16]. We use a
cylindrical coordinate system ðr; θ; zÞ with origin located at
the injection point and midway between the top and bottom
plates. The system is imaged through the top plate using a
megapixel camera. The grains scatter light and appear bright
against a dark background with the color of the illumination
light which can be mapped to the granular volume fraction ϕ
at that location [16]. The fluid in the suspension is visualized
by adding a dye which fluoresces green under ultraviolet
illumination.
Figure 1(b) shows snapshots as a suspension with ϕg ¼

0.2 is injected when ρd ¼ ρs. The suspension spreads out
uniformly over time with a circular front centered at the
injection point. Thus, this experiment shows that the air-
fluid meniscus is necessary to observe grain accumulation
and fingering in neutrally buoyant suspensions reported
previously [11,12]. Next, Fig. 1(c) shows an example
where ρs ¼ 1.07ρd. We observe that the suspension ini-
tially spreads out in a uniform circle before fingers develop
over time. While in the particular example shown ρs > ρd,
we find fingers form just as well when ρs < ρd over a
timescale which only depends on the density differences in
the absence of a meniscus.
We identify the angle-averaged radial distance of the

fluid front rf and the granular front rg from the injection
point by image processing and plot them in Fig. 2(a) for
ρs ¼ ρd and Fig. 2(b) for ρs ≠ ρd. While rf and rg are
observed to essentially overlap in Fig. 2(a) with small
differences due to residual differences in their densities,
rf is observed to systematically lead rg when ρs > ρd in
Fig. 2(b), as is also clear from the green color enhanced
image shown in the inset. If the suspension spreads
uniformly, then the radius of the suspension increases as

RðtÞ ¼ αh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Qt=πh

p
; ð1Þ

where αh ¼ 1 if the suspension and displaced fluid do not
overlap, and αh > 1 if they mix or overlap. For example, if
the flow is perfectly parabolic with nonslip boundary
conditions at the top and bottom, αh ¼

ffiffiffi
2

p
. RðtÞ corre-

sponding to a fitted value of αh ¼ 1.22 is observed to well

describe the data in Fig. 2(a) showing some degree of
mixing. The same curve is plotted in Fig. 2(b), and is
observed to systematically lag rf, and lead rg. In fact, in the
case where ρs ¼ 1.07ρd, we find rf is fitted by Eq. (1) with
αh ¼ 1.35, and rg is fitted by Eq. (1) with αh ¼ 1.07. Thus,
we find that the advance of the granular front slows down
relative to the fluid phase leading to a buildup of ϕ near the
front as we quantify next.
We obtain the azimuthally average granular volume

fraction hϕiθ as a function of radial distance r and plot
it in Figs. 2(c) and 2(d) for ρs ¼ ρd and ρs ≠ ρd, respec-
tively, over the time that the suspension is injected. We
observe in Fig. 2(c) that hϕiθ is constant and equals ϕg

before decreasing monotonically to zero at the front. The
effective viscosity of dense suspensions is given by [10]

ηs ¼ ηfð1 − ϕ=ϕcÞ−2.5ϕc ; ð2Þ

where ϕc ≈ 0.6 is the granular volume fraction at which the
suspension jams [3,16]. Thus, ηs monotonically decreases
with r and no fingering instability is observed under these
conditions [7,13]. By contrast, we observe in Fig. 2(d)
that hϕiθ initially decreases monotonically with r, but
becomes nonmonotonic with the formation of a peak which
increases in strength over time. This peak showing the
accumulation of grains results in a relative increase in ηs
before decreasing to ηf. While the mechanism by which
this annulus arises is due to a different reason than in
neutrally buoyant suspensions [12], it nonetheless results
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FIG. 2. (a),(b) The radius of the fluid front rf and granular front
rg as a function of time when ρs ¼ ρd (a) and ρs ¼ 1.07ρd (b).
Inset: A green color enhanced image used to identify rf, which
leads rg. The original image corresponds to t ¼ 100 s in Fig. 1(c).
An estimated front of the suspension RðtÞ plotted assuming
Eq. (1) fit αh ¼ 1.22. (c),(d) The average volume fraction hϕi as a
function of distance r and time t when ρs ¼ ρd (c) and ρs ≠ ρd
(d). The color map is scaled by the maximum volume fraction
hϕimax ¼ 0.25 in each case to highlight the variation in hϕiθ.
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in a mobility inversion which gives rise to conditions in
which the invasion can become unstable [7,20].
To quantify the development of fingers, we obtain the

radially averaged volume fraction of the grains hϕir in one
degree sectors out to a fixed distance r ¼ 7 cm. Figure 3(a)
shows hϕir as a function of angle θ for ρs ≠ ρd. It shows
that hϕir rises more or less uniformly as a function of θ as
the suspension moves out initially, but peaks develop over
time as identified by the markers. We calculate the self-
correlation function KϕðθÞ ¼ hhϕirðθo þ θÞhϕirðθoÞi −
hhϕirðθoÞi2 by averaging over θo to identify the mean
angle between fingers. Figure 3(b) shows the correspond-
ingKϕðθÞ, where we observe a clear emergence of a peak at
θm ¼ 14 deg :� 1 deg. at a time tc ≈ 40 s—denoted by the
arrow. The angle θm where the peak occurs corresponds to
the mean angle between fingers and can be associated with
the wavelength of the instability λ ≈ θmrg ≈ 25 mm. Thus,
λ ≫ h, and much larger than buoyancy-driven rolls
observed in Newtonian fluids with characteristic length
scale given by h [21].
We varied ϕg and Q to investigate θm and understand

the emergence of the dominant mode. Figure 4 shows
the fingering patterns observed after a fixed volume of the
suspension Vs ¼ 20 cm3 is injected in each trial. No dye is
added to the liquid, and the brighter regions correspond to
the granular component. We observe that the size of the
final patterns is roughly the same in all the trials, but the
number of fingers, and where they start, is observed to vary
with ϕg and Q. Figure 5(a) shows measured θm when a
clear peak emerges in KϕðθÞ corresponding to the onset of
fingering instability. We observe θm increases systemati-
cally with ϕg and decreases systematically with Q. Based
on these observed characteristics of the fingers, we next
develop an understanding of when and where the instability
occurs.
We consider an annulus with inner radius r1 and outer

radius r2 where grains begin to accumulate as sketched in
the inset to Fig. 5(b). We assume the volume fraction in the
inner region ϕ1 ≈ ϕg, the volume fraction in the annular
region ϕ2 ≈ ϕmax, and the volume fraction in the outer

region ϕ3 ≈ 0. We observe that ϕmax remains close to ϕg

even as the fingers develop [16], where friction between the
grains and the substrate can be important [22]. Thus, ϕ does
not have to reach ϕc for fingering to occur, although such
values can be reached later in the development of the
fingers. We estimate the time over which this annulus
develops by considering the timescale ts determined by the
settling speed of the grains. The Stokes settling speed is
given by vs ¼ 2

9
fða2gΔρ=ηfÞ, where f is the hindrance due
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FIG. 3. (a) Radial cumulative density reveals peaks correspond-
ing to development of fingers denoted by markers plotted in 10 s
time intervals. (b) The angular self-correlation function Kϕ when
ρs ¼ 1.07ρd. The peak indicated by the arrow corresponds to
growth of the maximum amplitude mode.
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FIG. 4. Various finger patterns observed with a black-and-
white camera after a fixed volume of suspension is injected
(ρs ¼ 1.07ρd). The scale bar is 20 mm.
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FIG. 5. (a) Systematic variations in θm can be observed with Q
and ϕg. (b) The observed time when annulus form to versus
calculated settling time ts of the grains solving Eq. (3) under
various Q and ϕg. The line corresponds to to=ts ¼ 1. (c) The
measured radius Rc when fingers appear. The lines correspond to
calculated ts obtained by solving Eq. (3). (d) The calculated mode
number from Eq. (5) is found to capture the measured mode
number nm over the entire range of the Q and ϕg. The line
corresponds to slope 1.
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to the presence of the other grains, and is given by f ¼
ηfð1 − ϕgÞ=ηsðϕgÞ [23], and Δρ ≈ ðρs − ρfÞ=2. To find ts,
we consider a column of water mixed with the grains.
Initially, the volume fraction of grains is that of the injected
suspension ϕg and the height of the column is the distance
between the plates h. The height of the column decreases as
grains settle, and from conservation of mass, the average
volume fraction of grains in the collapsing column ϕz is a
solution of [16],

d2ϕz

dt2
¼

�
2

ϕz
þ 1

vs

dvs
dϕz

��
dϕz

dt

�
2

: ð3Þ

We integrate Eq. (3) numerically with the boundary
condition that ϕzð0Þ ¼ ϕg at t ¼ 0 to find ts at which ϕz

is within 5% of ϕc. We then plot ts as a function of the
observed time to for the onset of dense granular annulus in
Fig. 5(b), and observe a good correspondence.
Once the granular components settle, they slow down

because of nonslip boundary conditions at the bottom
surface, leading to an effective decrease of the thickness
of the flowing region between the plates. This leads to a
decrease in mobility because it is inversely proportional to
the square of the thickness of the flowing region between
the plates. Thus, the radius Ro, where the instability occurs,
can be estimated using Eq. (1) as Ro ≈ αh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qts=πh

p
.

Plotting Ro for ϕg ¼ 0.1 and 0.3 in Fig. 5(c), we note that
it describes well the measured radius at which the granular
annulus form for ϕg, with intermediate cases in between
these two limits.
After mobility inversion occurs due to formation of the

annulus, perturbations of the front can grow provided they
can overcome surface tension. While an analysis of
unstable modes in miscible fluids notes that all modes
are unstable, with a lower cutoff given by the thickness of
the cell [20], this is clearly not what we observe. Thus, we
examine the calculated number of fingers at radial distance
r from the injection point in the case of fluids with
interfacial tension Γ [13]:

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

�
6Qrðη2 − η1Þ

πh2Γ

�
þ 1

s
; ð4Þ

where, η1 and η2 are the viscosities of the inner and outer
fluids, respectively. While the surface tension between two
miscible fluids is zero at equilibrium, the presence of
volume fraction gradients at the front implies that an off-
equilibrium Korteweg surface tension can exist at the
interface [15,24,25], and in the case of suspensions is
given by [24], Γe ¼ ðκ=δÞΔϕ2, where κ is the Korteweg
constant, and δ is the radial distance over which the volume
fraction changes by Δϕ. In case of thermal systems κ is
proportional to the temperature [24]. Because granular
suspensions are athermal, a granular temperature set by
the local shear rate may play a similar role [26].

For sufficiently small jr2 − r1j and incompressible flu-
ids, any perturbation of the interface between ϕ1 and ϕ2,
results in a deformation of interface between ϕ2 and ϕ3.
Thus, while the change in volume fraction is small between
the interface 1 and 2, the surface tension effect is essentially
dominated by the value going from interface 2 to 3. Then,
Γe ¼ ðκ=δÞϕ2

max. Because ϕmax ≈ ϕg as the fingers develop
[16], we linearize the change in viscosity in terms of the
change of volume as ðη2 − η1Þ ≈ 2.5ηfðϕ2 − ϕ1Þ.
Then, we have the mode nm with maximum amplitude,

assuming nm ≫ 1, as

nm ≈ αm

ffiffiffiffiffiffiffiffi
5αh
π3=2

r ffiffiffi
δ

κ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηft

1=2
s Q3=2ðϕ2 − ϕ1Þ

h5=2ϕ2
max

s
; ð5Þ

where, αm ≃ 0.422 [24] is introduced to account for the
fact that we identify the mode with the maximum ampli-
tude. It is further possible to approximate ðϕ2 − ϕ1Þ with
ðϕmax − ϕgÞ. However, because of the sensitivity of nm on
this difference, we have calculated nm based on the actual
measured difference rather than this last approximation.
Figure 5(d) shows the comparison of the measured number
of fingers nm ¼ 360=θm versus those calculated using
Eq. (5). We observe that the data is well described by a
linewith κ=δ ¼ 0.017 Nm−1 and goodness of fitR2 ¼ 0.73
[16]. Thus, we understand the instability occurs when a
mobility inversion develops due to increasing ϕ at the front,
with mode number given by the Korteweg surface tension.
In conclusion, we have demonstrated that the invasion of

a suspension into a miscible fluid is unstable when their
densities are not exactly matched. We show that granular
sedimentation in the resulting mixed suspension gives rise
to mobility inversion and a Saffman-Taylor-like instability
even in the absence of a meniscus. We then explain the
observed maximum amplitude mode as a function of
system parameters by noting the contribution of a
Korteweg-like interfacial tension on the stability of the
patterns in miscible suspensions. The relative contribution
of granular temperature in estimating this nonequilibrium
tension remains an interesting avenue for future research.
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