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We reveal the universal effect of gauge fields on the existence, evolution, and stability of solitons in the
spinor multidimensional nonlinear Schrödinger equation. Focusing on the two-dimensional case, we show
that when gauge field can be split in a pure gauge and a nonpure gauge generating effective potential, the
roles of these components in soliton dynamics are different: the localization characteristics of emerging
states are determined by the curvature, while pure gauge affects the stability of the modes. Respectively the
solutions can be exactly represented as the envelopes which may depend on the pure gauge implicitly
through the effective potential, and modulating stationary carrier-mode states, which are independent of the
curvature. Our central finding is that nonzero curvature can lead to the existence of unusual modes, in
particular, enabling stable localized self-trapped fundamental and vortex-carrying states in media with
constant repulsive interactions without additional external confining potentials and even in the expulsive
external traps.
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Gauge fields are ubiquitous in physical theories ranging
from classical electromagnetism [1] and theories of molecu-
lar [2], spinor [3], and many-body [4] systems, to particle
physics [5] and gravity [6]. Gauge fields can be artificially
created in atomic systems [7], a spin-orbit coupled (SOC)
Bose-Einstein condensate (BEC) [8] being a celebrated
example, and in photonics [9]. Since nonlinearity is naturally
present in these systems, the effect of the gauge fields on
dynamics of nonlinear waves in them has become a subject
of growing interest. New types of spatially localized non-
linear waves—solitons—were introduced in SOC BECs.
In one-dimensional (1D) settings, solitons with various
symmetries imposed by a constant [10], spatially dependent
[11–13], and nonlinear gauge fields [14] were proposed in
pseudospin-1=2 BECs, as well in SOC BECs with integer
pseudospin [15]. It was established [12,13] that inhomo-
geneous gauge fields may be described by an integrable
extension of the Manakov model [16], i.e., by coupled
nonlinear Schrödinger (NLS) equations with SU(2)-
symmetric nonlinearity.
Gauge fields in two-dimensional (2D) nonlinear dynam-

ics may have remarkable stabilizing effect. Already in [17]
it was noticed that combination of a rotating trap with
external parabolic potential, viewed as a gauge potential,
sustains stable solitons of 2D NLS equation. A possibility
of confinement by a gauge field in a spinor BEC in the
quasirelativistic limit was mentioned in [18]. Solitons and
half-vortices in SOC BECs were reported in the presence
of Zeeman lattices [19,20], in free space [21,22], and in
dipolar SOC BECs [23]. Stable 2D solitons were also found
in optical media with dispersive coupling mimicking SOC

[24]. Thus, it was shown that SOC by itself can stabilize 2D
solitons in media with attractive interactions. Moreover,
stable self-trapped modes have been found numerically in
SOCBECswith self- and cross-interactions of different signs
[25]. At the same time, spatially localized 2D BEC solitons
with all repulsive interactions under the action of gauge fields
have been studied only in the presence of either external traps
[26,27] or lattices [19]. There exist also theoretical predic-
tions of metastable solitons in three-dimensional (3D) SOC
BECs sustained by3DSOC[28], aswell as solitons sustained
by 2D SOC in the presence of a Zeeman splitting [21].
In this Letter we show that pure gauge and nonpure

gauge components of the field have profoundly different
effects on nonlinear modes. A spatially localized solution
of SU(2)-symmetric NLS equations allows for the (exact)
representation [see Eq. (2) below] in a form of a carrier
state (determined by the pure gauge) that is modulated by
the envelope evolving in an effective potential induced by
the nonpure gauge. Thus, the latter affects the very existence
of solitons. In contrast, the pure gauge may have an impact
on nonlinear modes only through effective potentials.
However, changing the structure of the carrier states, i.e.,
the internal structure of solitons, does affect the soliton
stability. Breaking SU(2) symmetry by nonlinearity reveals
stabilizing properties of the field that is pure gauge in the SU
(2) limit. Exploring the 2D case, we illustrate confining and
stabilizing (or destabilizing) effects of a gauge field on
solitons in the repulsive medium without confining linear
potentials and even in the presence of expulsive traps.
Remarkably, even vortex solitons can be stabilized by gauge
fields.
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The model and gauge transformation.—The phenomena
described below are governed by the two-component NLS
equation

i∂tΨ ¼ 1

2
½−i∇þ AðxÞ�2Ψþ V0ðxÞΨþGðΨ†;ΨÞΨ ð1Þ

for a spinor Ψðx; tÞ ¼ ðψ1;ψ2ÞT in a d-dimensional space
x ∈ Rd. In Eq. (1), AðxÞ ¼ ðA1;…;AdÞ is the vector gauge
field, whose entries AjðxÞ are Hermitian 2 × 2 matrices.
The matrix GðΨ†;ΨÞ describes the nonlinearity, and V0ðxÞ
is the external potential. The gauge field determines
the curvature [29] FmnðAÞ ¼ ∂mAn − ∂nAm − i½Am;An�,
where ∂n ≡ ∂=∂xn. One can define an effective “magnetic”
field [7] as B ¼ εmnFmnðAÞ and Bl ¼ εlmnFmnðAÞ, in 2D
and 3D cases, respectively, where ε is the Levi-Civita
symbol (here the sum over repeated indexes is computed).
In the linear case (G ¼ 0) a gauge field generating zero

curvature (alias, pure gauge) can be gauged out provided
that space domain is simply connected. The possibility of
eliminating pure gauge using judiciously chosen gauge
transformation persists also in the nonlinear case, provided
the nonlinearity is SU(2)-symmetric [13]. Suppose that a
gauge field generates nonzero curvature, i.e., FmnðAÞ ≠ 0.
One can represent AðxÞ ¼ ÃðxÞ þ aðxÞ, where Ã is a pure
gauge, and hence FmnðÃÞ ¼ 0 for all m and n, while a is a
component generating nonzero curvature [both ÃðxÞ and
aðxÞ are Hermitian]. Consider also an orthonormal basis,
Φ1;2ðxÞ (Φ†

iΦj ¼ δij) in the spinor space consisting of the
kernel of the operator −i∇þ ÃðxÞ: i∇Φj ¼ ÃΦj. The
existence of such a basis is ensured by the zero curvature,
condition FmnðÃÞ ¼ 0, that is also integrability condition,
and by the hermiticity of the components of Ã [13]. Now
one can define the unitary 2 × 2 matrix solution Φ ¼
ðΦ1;Φ2Þ (Φ†Φ ¼ σ0, where σ0 is 2 × 2 identity matrix) and
perform the gauge transformation

Ψ ¼ ΦU; Uðx; tÞ ¼ ðu1ðx; tÞ; u2ðx; tÞÞT: ð2Þ

The spinor U solves the equation

i∂tU ¼ −
1

2
∇2U þ GðU†Φ†;ΦUÞU − iα · ∇U

−
i
2
ð∇ · αÞU þ 1

2
α2U þ V0ðxÞU; ð3Þ

where the transformed gauge field α ¼ Φ†aΦ originates
an effective potential. The spinor U can be viewed as an
envelope, dependent of the pure gauge only through α, and
propagating against stationary “carrier” states Φ1;2ðxÞ that
do not depend on the curvature. It follows from Eq. (3)
that in the case of SU(2)-invariant nonlinearity,
GðU†Φ†;ΦUÞ ¼ GðU†; UÞ, the presence of a pure gauge,
A ¼ Ã and a ¼ 0, does not affect the existence of nonlinear

modes, although a spatial profile of a solution—if any
solution exists—depends on the gauge field. If, however,
a ≠ 0 the equation for the envelope becomes gauge-field
dependent, and thus the very existence of the modes can be
affected by such a field. For non-SU(2)-invariant nonlinear-
ity, a pure gauge may affect the existence of stationary
solutions because now the nonlinearity becomes x
dependent.
The solutionsΦ1;2 can be found explicitly in a number of

cases. For example, if the components of Ã are of the form
A0m ¼ XmðxmÞAm, where XmðxmÞ are real-valued func-
tions of one variable and Am are Hermitian matrices
simultaneously diagonalizable by a unitary transformation
S: S−1AmS ¼ diagðλ1m; λ2mÞ, then

Φ1¼
S
ffiffiffi

2
p

�

1

0

�

e−i
P

j
λ1jξj ; Φ2¼

S
ffiffiffi

2
p

�

0

1

�

e−i
P

j
λ2jξj ; ð4Þ

where ξjðxjÞ ¼
R

XjðxjÞdxj are the real functions.
If some spatial components of A, considered alone,

constitute a pure gauge, the spatial dimensionality of a
can be made less than that of A and hence less than d. For
example, if in the 3D space A1¼A1ðx1Þ [∂2A1¼ ∂3A1¼ 0],
one can choose Ã ¼ ðA1; 0; 0Þ so that a ¼ ð0; A2; A3Þ is a
2D matrix vector in the 3D space. Hence, if there exists a
stable nonlinear mode sustained by such gauge field, then
there must also exist a stable mode sustained by a gauge field
of a lower dimension (see [21] for examples) that is obtained
by gauging out the respective spatial components of A.
Two-dimensional models.—Turning now to the 2D case,

we present a variety of examples of self-sustained stable
modes sustained by the curvature. To this end we consider
Ã ¼ ðA1ðx1Þσ1; A2ðx2Þσ1Þ, where AjðxjÞ can be arbitrary
functions ensuring the existence of the integrals ξj (and
of the matrix Φ) defined in (4). Focusing on the
simplest (Abelian) case ½An; Am� ¼ 0, we set a¼
ðζ1ðx2Þσ1;ζ2ðx1Þσ1Þ where functions ζjðx3−jÞ are so far
arbitrary. In this case α ¼ −ðζ1ðx2Þσ3; ζ2ðx1Þσ3Þ and
∇ · a ¼ 0. We consider typical nonlinearity

GðΨ†;ΨÞ ¼ diagðgjψ1j2 þ g̃jψ2j2; gjψ2j2 þ g̃jψ1j2Þ; ð5Þ

where g > 0 (g̃ > 0) and g < 0 (g̃ < 0) correspond to
repulsive and attractive intraspecies (interspecies) inter-
actions. If g̃ ¼ g, i.e., GðΨ†;ΨÞ ¼ gðΨ†ΨÞσ0, Eq. (1) is
unitary equivalent to an SU(2)-invariant spinor NLS
equation [13]. Since the latter does not support stable
2D localized states, a pure gauge also cannot lead to their
emergence. However, the picture changes drastically for
nonzero curvature B ≠ 0.
First we consider Eqs. (1) and (5) with g̃ ¼ g and without

external trapping potential, V0ðxÞ≡ 0. We set Ã ¼ x and
explore the curvature introduced by a constant field B
generated by a ¼ ðð1þ B=2Þx2σ1; ð1 − B=2Þx1σ1Þ. In
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Fig. 1 we show examples of nonlinear states sustained by
such curvature [all reported numerical results were obtained
for (1)]. A stable fundamental soliton in the medium
with attractive nonlinearity is shown in Figs. 1(a) and 1(b).
More striking results are presented in Figs. 1(c)–1(f),
illustrating stable localized fundamental and vortex-
carrying states obtained for repulsive nonlinearity (vortices
of a single repulsive gauged NLS equation in a constant
magnetic field have been reported in [30]). Obviously, such
states would not exist without curvature atV0ðxÞ≡ 0, sowe
term them pseudosolitons. Their amplitudes (upper row)
feature rotational symmetry, while their phases (middle row)
are highly unconventional and have different symmetries
for different types of solutions [they are determined by
phase structure of Φ1 or Φ2 carrier states defined in (4) as
discussed below]. The states in Fig. 1 exist as stationary
families (Ψ ∝ e−iμt) parameterized by the chemical potential
μ determining the normof the solutionN ¼ R

R2 Ψ†Ψdx. The
dependencies NðμÞ for fundamental solitons and pseudo-
solitons are presented in Fig. 2(a). In the whole domain of μ
shown, the families of fundamental solitons (μ < B=2,
attractive medium) and pseudosolitons (μ > B=2, repulsive
medium) are dynamically stable [the red unstable family
in panel (a) corresponds to a “superposition” state dis-
cussed below].

Gauge field can sustain localized linear modes, i.e.,
stationary solutions of (1) at G≡ 0. In our case they
are given by Ψlin

j ¼ e−ið−1Þjx1x2−iBt=2−Bx2=4Φj with the
carrier modes obtained from (4) with the proper matrix
S: Φj ¼ ð1; ð−1ÞjÞTeið−1Þjðx1þx2Þ=2=

ffiffiffi

2
p

(j ¼ 1, 2). Both
families shown in Fig. 1(a) bifurcate from one of the states
Ψlin

j (families bifurcating from Ψlin
1 and Ψlin

2 coincide).
Notice that the existence of the linear limit supported by 1D
SOC in a 2D BEC requires strong anisotropy of the limiting
solution [21]. In our case the soliton amplitude remains
radially symmetric at Ψj → Ψlin

j , μ → B=2, reflecting
different origin of the phenomenon: now the linear limit
is sustained by the curvature induced by the gauge field.
When μ → −∞ (attractive medium), the fundamental

soliton approaches Townes soliton [31] with the norm N →
NT ≈ 5.85 [see Fig. 2(a)]. The limit μ → þ∞ (repulsive
medium) is described by the Thomas–Fermi (TF) approxi-
mation, which now can be applied even in the absence
of the external potential. The TF limit for pseudosolitons
belonging to the family bifurcating from Ψlin

1 has the form

FIG. 1. Absolute value jψ1j (upper row) and phase distributions
(middle row) for the fundamental soliton [(a),(b)] in the attractive
medium, g ¼ −1, and self-trapped fundamental [(c),(d)] and
vortex [(e),(f)] pseudosolitons in the repulsive medium, g ¼ 1
(corresponding μ values are indicated in the plots and by red dots
in Fig. 2 below). These are stable and have identical jψ1j and jψ2j
distributions but different phases. (g)–(i) Decay of the unstable
vortex soliton with μ ¼ 1.05 in the attractive medium. Numerical
results shown here and below were obtained for the original
system (1) and for B ¼ 1.

FIG. 2. Norm N (a), maximal amplitude ψmax
1;2 (b), and integral

width W (c) of the fundamental solitons (μ < 1=2, g ¼ −1) and
pseudosolitons (μ > 1=2, g ¼ þ1), and norm of vortex solitons
and vortex pseudosolitons (d) vs μ. The NðμÞ curves for families
bifurcating from Ψlin

1;2 coincide. The curves in (a) also exactly
coincide with those for solitons bifurcating from the linear
superposition Ψlin

1 þ Ψlin
2 . They also coincide with families

obtained for non-SU(2)-symmetric nonlinearities g ¼ −1.4, g̃ ¼
−0.6 (at μ < 1=2) and g ¼ 1.4, g̃ ¼ 0.6 (at μ > 1=2). The family
bifurcating from Ψlin

1 þ Ψlin
2 , however, is unstable at μ ≳ 1.05

[indicated by red curve in (a) coinciding with stable branch for the
family bifurcating from Ψlin

1 ]. Stable (unstable) families are
shown black (red).
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ΨTF
1 ¼ eix1x2−iμtðμ=g − B2x2=8gÞ1=2Φ1 and is valid for

jxj < ð8μÞ1=2=B. Maximal amplitude ψmax
1;2 ¼ maxxjψ1;2j

of the state in the TF limit is thus ∼μ1=2. This is in
qualitative agreement with the increase of soliton amplitude
shown in Fig. 2(b) for μ > 1=2. The tendency for con-
traction of the nonlinear state in the attractive case and
its expansion in the repulsive one is illustrated in Fig. 2(c)
by the dependence of the integral soliton width W ¼
N½RR2ðΨ†ΨÞ2dx�−1=2 on μ.
Families of localized vortex states sustained by the

gauge field also have the linear limit. In Fig. 2(d) we
show a family bifurcating from the linear state Ψvort

1 ¼
eix1x2−i3Bt=2−Bx

2=4ðx − iyÞΦ1. One of our central results is
that all vortex pseudosolitons (at μ > 3=2, g ¼ −1) as well
as vortex solitons (at 1.125 < μ < 3=2, g ¼ −1) were
found dynamically stable [black curves in Fig. 2(d)].
Vortex solitons with μ≲ 1.125 in the attractive medium
are unstable [red curve in Fig. 2(d)] and usually decay into
two rotating fragments that do not fly apart but perform
aperiodic radial oscillations [Figs. 1(g)–1(i)].
A role of a pure gauge.—Since Ã can be gauged out and

carrier states Φ1;2 are mutually orthogonal, the pure gauge
does not affect linear dynamics. Nonlinearity couples the
carrier states and since their phases depend on Ã [see (4)], it
can reveal the presence of pure gauge in two ways. First,
nonlinear modes from families bifurcating from a super-
position of linear states c1Ψlin

1 þ c2Ψlin
2 (c1;2 are constants)

display different spatial symmetries and stability properties.
In Fig. 3 we illustrate a stable fundamental soliton [(a), (b)]
and pseudosoliton [(c), (d)] belonging to the families
bifurcating from the Ψlin

1 þΨlin
2 state in the attractive and

repulsive media, respectively. The NðμÞ dependence for
this family exactly coincides with that shown in Fig. 1(a)
for solitons bifurcating from either Ψlin

1 or Ψlin
2 states.

However, now jψ1;2j distributions are different: amplitude
distributions in Fig. 3 reveal the stripe patterns resembling
previously known theoretical [27,32] and experimental [33]
results. The stability properties are different too: the family
of pseudosolitons becomes unstable at μ ≳ 1.05 [red line in
Fig. 2(a)]. Decay of an unstable pseudosoliton is illustrated
in Figs. 3(e) and 3(f).
Second, a gauge field can sustain 2D localized modes

also in media with non-SU(2)-symmetric nonlinearity
[g̃ ≠ g in ([16])]. When α is diagonal (as in the case at
hand), such a possibility becomes obvious from the trans-
formed Eq. (3) allowing for “one-component” solutions of
either U ¼ ðu; 0ÞT or U ¼ ð0; uÞT type. For the A chosen
above, the respective fundamental solitons and pseudoso-
litons have amplitude distributions identical to those shown
in Figs. 1(a) and 1(c) for the same μ values. The stability of
the obtained modes, however, is now different. For the
particular case of attractive g ¼ 1.4, g̃ ¼ −0.6 and repulsive
g ¼ 1.4, g̃ ¼ 0.6 nonlinearities and for a resulting in
constant B, we found that at Ã ¼ 0 all solutions are stable
in the range of μ values shown in Fig. 1(a), while for Ã ¼ x
pseudosolitons are unstable in the repulsive medium
at μ ≳ 1.35.
Solitons in expulsive trap.—Striking effect of a gauge

field on 2D stable localized modes is observed in a
medium with either attractive or repulsive SU(2)-invariant
nonlinearity in the presence of an expulsive parabolic
trap V0ðxÞ ¼ −ω2

0x
2. We consider spatially dependent

radially symmetric field B ¼ ω3
0x

2 generated by a ¼
ðω2

0=3Þð−x32; x31Þ. Families of the localized solutions bifur-
cating from the time-independent linear mode with μ ¼ 0
are shown in Fig. 4(a). Surprisingly, stable solitons with
relatively small amplitudes were found even in the attrac-
tive medium, while pseudosoliton family (repulsive
medium) is always stable. Notice that unstable solitons
in the attractive medium now may have the norm exceeding
norm NT of the Townes soliton. In Fig. 5 we show the
structure of stable fundamental pseudosoliton in the
expulsive potential. The distributions jψ1;2j are radially
symmetric and identical, while the fourfold symmetry

FIG. 3. Absolute values jψ1;2j for solitons and pseudosolitons
bifurcating from the state Ψlin

1 þΨlin
2 in the attractive (a),(b),

μ ¼ 0, and repulsive (c),(d), μ ¼ 2, media, respectively. (e),(f)
Decay of the unstable pseudosoliton of this type at μ ¼ 1.4 in the
repulsive medium.

FIG. 4. Norm N (a) and integral width W (c) vs μ for
fundamental soliton in the expulsive parabolic trap with
ω0 ¼ 8−1=2.
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introduced by the gauge field dictates the symmetry
of phase distributions of the first [Fig. 5(b)] and second
[Fig. 5(c)] components. Remarkably, the system supports
also solutions with the fourfold symmetric amplitude
distributions. For example, a nonlinear family of such
solutions bifurcate from a (time-independent) linear state
Ψlin

1 ¼ ð1;−1ÞTeix2=2−ω2
0
ðx4

1
þx4

2
Þ=12. Vortex solitons and pseu-

dosolitons exist in expulsive traps as well.
Conclusions.—We have shown that gauge fields can

dramatically affect stability and, when they generate non-
zero curvature, the very existence of localized modes. The
effect of a gauge field can be “decomposed” into two parts.
Pure gauge is responsible for time-independent carrier
states and affects soliton stability. The component having
nonzero curvature determines the types of the localized
solutions and possible evolution scenarios. These phenom-
ena were illustrated on the examples of 2D solitons in
attractive media and pseudosolitons in repulsive media.
Nonlinear modes sustained by gauge fields with nonzero
curvature were found even in the presence of repulsive
potentials. The approach can be employed for creation of
3D stable localized states, generating multidimensional
modes in systems with integer pseudospin, investigation
of the impact of gauge fields on collapse, available so far
only for specific 3D models [34], etc.
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