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Non-Euclidean geometry, discovered by negating Euclid’s parallel postulate, has been of considerable
interest in mathematics and related fields for the description of geographical coordinates, Internet
infrastructures, and the general theory of relativity. Notably, an infinite number of regular tessellations in
hyperbolic geometry—hyperbolic lattices—are expected to extend Euclidean Bravais lattices and the
consequent wave phenomena to non-Euclidean geometry. However, topological states of matter in
hyperbolic lattices have yet to be reported. Here we investigate topological phenomena in hyperbolic
geometry, exploring how the quantized curvature and edge dominance of the geometry affect topological
phases. We report a recipe for the construction of a Euclidean photonic platform that inherits the topological
band properties of a hyperbolic lattice under a uniform, pseudospin-dependent magnetic field, realizing a
non-Euclidean analog of the quantum spin Hall effect. For hyperbolic lattices with different quantized
curvatures, we examine the topological protection of helical edge states and generalize Hofstadter’s
butterfly, by employing two empirical parameters that measure the edge confinement and defect immunity.
We demonstrate that the proposed platforms exhibit the unique spectral-magnetic sensitivity of topological
immunity in highly curved hyperbolic planes. Our approach is applicable to general non-Euclidean
geometry and enables the exploitation of infinite lattice degrees of freedom for band theory.
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Band theory in condensed-matter physics and photonics
has been connected to the concept of topology [1–4]. The
discovery of topologically nontrivial states has revealed a
new phase of matter [3,4]. This phase offers the immunity of
electronic conductance [1,3] or light transport [2,5–7]
against disorder through topologically protected edge states.
A fundamental approach for generalizing band theory is

to rethink the traditional assumptions regarding energy-
momentum dispersion relations, such as static, Hermitian,
and periodic conditions. In photonics, dynamical lattices
enable one-way states in space-time Floquet bands [8].
Non-Hermitian photonics introduces novel band degener-
acies [9] and topological phenomena [10]. Various studies
have demonstrated perfect band gaps [11,12] and topo-
logical invariants [13–15] in disordered structures.
Most of the cornerstones in band theory have employed

Euclidean geometry, because Bloch’s theorem is well
defined for a crystal, which corresponds to the uniform
tessellation of Euclidean geometry. However, significant
degrees of freedom are overlooked in Euclidean geometry
because of a finite number of uniform Euclidean tessella-
tions. For example, when considering a lattice with con-
gruent unit cells, only six, four, or three nearest-neighbor
interactions are allowed in two-dimensional (2D) Euclidean
lattices [16–18]. Therefore, access to non-Euclidean geom-
etry has been of considerable interest for employing more
degrees of freedom in interelemental relationships of many-
body systems. In circuit quantum electrodynamics, the

extension of band structures to hyperbolic geometry was
demonstrated [19], which revealed unique flat bands with
spectral isolation. Although this cornerstone extends the
concept of lattices from Euclidean to non-Euclidean geom-
etry, the observed phenomena exploit only topologically
“trivial” states.
Here, we demonstrate photonic topological phases of

matter in hyperbolic geometry. Using the recursive gauge-
field assignment, we design a “topological hyperbolic
lattice”: the lattice that is obtained from the regular tiling
of the hyperbolic plane and is under a uniform effective
magnetic field. We reveal frequency-selective and tunable
topologically protected edge states with defect immunity as
a non-Euclidean extension of the quantum spin Hall effect
(QSHE). Our result is a step toward the non-Euclidean
generalization of topological phenomena.
Among three homogeneous 2D geometries—elliptic,

Euclidean, and hyperbolic planes—only Euclidean and
hyperbolic planes belong to an infinite plane [16,17].
Thus, we focus on topological phenomena in 2D hyper-
bolic lattices. Hyperbolic lattices are obtained by general-
izing Euclidean Bravais lattices to regular tiling: a
tessellation of a plane using a single type of regular
polygon. Each polygon vertex corresponds to a lattice
element, while the polygon edge generalizes the Bravais
vector. To visualize the hyperbolic plane, we employ the
Poincaré disk [16,17]: the projection of a hyperboloid onto
the unit disk [Figs. 1(a)–1(c), right].
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The negative curvature of the hyperbolic plane differ-
entiates hyperbolic lattices from their Euclidean counter-
part. A polygon in the hyperbolic plane has a smaller sum
of internal angles than that of the Euclidean counterpart,
permitting denser contact of the polygons at the vertices
[Figs. 1(a)–1(c)]. For example, while only four squares can
be contacted in a Euclidean square lattice, any number of
squares greater than four can be contacted in hyperbolic
lattices. Such “infinite” lattice degrees of freedom are
expressed by the Schläfli symbol fp; qg, the contact of
q p-sided regular polygons [16,17], as f4; q ≥ 5g for a
square unit cell. With a seed polygon, each regular tiling is
achieved by recursively adding neighboring polygons to
the outermost edges per epoch [Fig. 1(d)], filling the unit
disk at the infinite lattice limit. This recursive process
implies treelike geometric properties of hyperbolic lattices.
Contrary to freely tunable areas of Euclidean polygons,

the polygon area in the hyperbolic plane is restricted by the
curvature of the plane and the sum of the internal angles
[16,17]. The Gaussian curvature K of the hyperbolic lattice
fp; qg is determined as (Supplemental Material, Note S1
in [20])

K ¼ − pπ
Apoly

�
1 − 2

p
− 2

q

�
; ð1Þ

where Apoly is the area of the lattice unit polygon. For the
same Apoly, the curvature K has a “quantized” value defined
by fp; qg.
Because of the crinkling shapes of the hyperbolic plane,

the realization of 2D hyperbolic lattices is extremely

difficult, requiring complicated 3D structures [16,29].
To resolve this issue, we exploit the correspondence
between graph networks and coupled-element systems
[19,30], assigning graph vertices to elements and graph
edges to interelemental interactions. When the identical
interaction is assigned to all graph edges, the Hamiltonian
of a coupled-element system depends only on the network
structure of its graph representation. For the 2D Euclidean
realization of a hyperbolic lattice, we employ the Poincaré
disk as a graph. The identical interaction for all graph edges
then leads to identical wave properties in the Poincaré disk
and its deformed graphs [Fig. 1(e)].
To realize the Poincaré disk, we employ photonic

coupled-resonator platforms, assigning each lattice site to
the resonator that supports the pseudospins for clockwise
(σ ¼ þ1) and counterclockwise (σ ¼ −1) circulations [2].
The identical connection between lattice sites is realized by
the coupling between resonators through a zero-field wave-
guide loop [Figs. 2(a)–2(c); Supplemental Material, Note S2
in [20] ]. The coupling strength is independent of the real-
space distance between the resonators and is determined
by the evanescent coupling κ between the loop and the
resonators: the same coupling strength in Figs. 2(a)–2(c).
By introducing the phase difference between the upper (þφ)
and lower (−φ) arms [Fig. 2(c)], the loop leads to the gauge
field φ having a different sign for each pseudospin.
The suggested platform enables a real-space construction

of the Poincaré disk [Fig. 2(d)], which inherits wave
properties of a hyperbolic lattice. The structure is governed
by the photonic tight-binding Hamiltonian (Supplemental
Material, Note S2 in [20])

FIG. 1. Hyperbolic lattices. (a)–(c) (left) The saddle-shaped surface of the hyperbolic plane and (right) Poincaré disks for different K.
(d) Recursive generation of the hyperbolic lattice f4; 6g. (e) A graph view of the hyperbolic lattice. For the original vertex positions in
the polar coordinate (r, ξ), each deformed graph is obtained with fðrÞ ¼ r2 and gðξÞ ¼ ξ2=ð2πÞ.
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H ¼
X
m;σ

ωma
†
mσamσ þ t

X
hm;ni;σ

ðe−iσφmna†mσanσ þ H:c:Þ; ð2Þ

where ωm is the resonance frequency of the mth resonator
site, a†mσ (or amσ) is the creation (or annihilation) operator
for the σ pseudospin at the mth site, t ¼ κ2=2 is the
coupling strength between the sites, φmn is the additionally
acquired phase from the nth to mth sites, the pair hm; ni is
determined by the graph edge of the Poincaré disk, and H.c.
denotes the Hermitian conjugate. At this stage, we set the
identical resonance frequency as ωm ¼ ω0, where ω0 is
constant. The practical implementation of the Poincaré
disk is restricted by the geometric nature of hyperbolic
lattices: the scale-invariant distance between resonators
(Supplemental Material, Note S3 in [20]).
In analyzing the Poincaré-disk wave structure, we con-

sider “finite” and “spin-degenerate” structures. First, due to
the lack of commutative translation groups and Bravais
vectors in hyperbolic geometry, Bloch’s theorem cannot be
applied to hyperbolic lattices [19]. We instead apply
numerical diagonalization to the Hamiltonian H in
Eq. (2) for finite but large hyperbolic lattices (six-epoch
generation for each lattice configuration throughout this
Letter). The difference in analyzing hyperbolic lattices
compared to the conventional eigenstate calculation of
finite Euclidean lattices [2,8] is in the nearest-neighbor
pair hm; ni determined by the Poincaré disk. Second,
because pseudospin modes experience the same magnetic
field strength with the opposite sign, the consequent band
structures of both pseudospins are identical when spin
mixing is absent [2]. Assuming this spin degeneracy, we
focus on the σ ¼ þ1 pseudospin. From these conditions,
we observe extended flat bands in hyperbolic lattices for
topologically trivial cases (Supplemental Material, Note S4
in [20]).

We now investigate the photonic QSHE [2,4] in hyper-
bolic square lattices, which we call the hyperbolic QSHE.
The uniqueness of the hyperbolic QSHE stems from
noncommutative translation groups in hyperbolic geometry
[17,19], which prohibit the natural counterpart of Bravais
lattices. When constructing a uniform magnetic field in
topological Euclidean lattices, a “Landau gauge”—the
linearly increasing gauge field along one of the Bravais
vectors—is usually employed [1–4,8,31,32]. However, this
Landau gauge cannot be implemented in hyperbolic geom-
etry due to the absence of Bravais vectors. We instead
propose the tree-type design of a “hyperbolic gauge” for the
hyperbolic QSHE [Figs. 3(a) and 3(b)]. In this design, the
unit cell area Apoly is effectively the same for the entire class
of f4; q ≥ 5g (setting Apoly ¼ 1), because the indirect
coupling strength t is set to be the same.
Consider the target magnetic flux θ through each unit

polygon of a hyperbolic lattice. We assign gauge fields
equally to each edge of the seed polygon [blue solid arrows
in Fig. 3(a)]. For the polygons in the next epoch [Fig. 3(b)],
after evaluating the predefined gauge fields (blue dashed
arrows), we calculate the deficient gauge for the target flux
θ and then assign the necessary average gauge to each
undefined polygon edge (green solid arrows). The recursive
process leads to the gauge configuration that achieves a
uniform magnetic field (B ¼ θ) through the entire polygons
[Fig. 3(c)] as the hyperbolic counterpart of the Landau
gauge. The suggested procedure is applicable to any
geometry under an arbitrary magnetic field, including
elliptic geometry and nonuniform magnetic fields.
When analyzing topological phenomena in hyperbolic

lattices, we cannot apply the well-known reciprocal-space
formulation of the Chern number due to the absence of
Bravais vectors. We instead employ an empirical quantity

CðnÞ
edge [33]

FIG. 2. Photonic hyperbolic lattices. (a)–(c) Coupling schematics for the identical connection between lattice sites. (d) An example of
photonic hyperbolic lattices: f4; 6g lattice at the epoch 2.
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CðnÞ
edge ¼

P
r∈Λedge

jψ ðnÞ
r j2P

N
r¼1 jψ ðnÞ

r j2
; ð3Þ

where r denotes each lattice element, N is the total number

of elements, ψ ðnÞ
r is the field amplitude of the nth eigenstate

at the rth element, and Λedge is the set of the boundary

elements of the system. CðnÞ
edge measures the spatial energy

concentration at the system boundary and has been applied
to quantify the topological phase in aperiodic systems [33].
Figures 3(d)–3(f) showCðnÞ

edge in Euclidean [Fig. 3(d)] and
hyperbolic lattices [Figs. 3(e) and 3(f)] at each eigenfre-
quency ω for the magnetic field B ¼ θ. Figure 3(d) presents
the spectrum analogous to Hofstadter’s butterfly [31],

where the regions of high CðnÞ
edge depict topologically

protected helical edge states [1–4,34]. In contrast, hyper-

bolic lattices generally lead to a much higher CðnÞ
edge than the

Euclidean lattice [Figs. 3(e) and 3(f) with the color range

0.5 ≤ CðnÞ
edge ≤ 1.0], showing stronger energy confinement

on the system boundary. This boundary-dominant behavior
is explained by the treelike geometric nature of hyperbolic
lattices: more boundary elements in a more curved geom-
etry, analogous to more leaves on a tree with more branches
(Supplemental Material, Note S5 in [20]). This geometrical

origin also clarifies that a high CðnÞ
edge does not guarantee

“topological protection,” as shown in Eq. (3): quantifying
the energy concentration at the system boundary, not

measuring the topological quantity or its related property,
such as disorder-immune behaviors. For example, a high
density of topologically trivial edge states prohibits the

finding of topologically protected states through CðnÞ
edge.

To extract topologically protected states from a high
density of edge states, we examine the scattering from
hyperbolic QSHE systems. We employ input and output
waveguides that are evanescently coupled to the selected
elements at the system boundary [Figs. 4(a) and 4(b)] and
then evaluate the transmission against disorder. We focus
on spin-mixing-free diagonal disorder [2], which may
originate from imperfections in the radii or refractive
indices of optical resonators. Diagonal disorder is intro-
duced by assigning random perturbations to the resonance
frequency of each element, as ωm ¼ ω0 þ unif½−Δ;þΔ�,
where unif½a; b� is a uniform random distribution between
a and b and Δ is the maximum perturbation strength.
Figure 4(c) shows the transmission spectrum with a

nonzero magnetic field for different realizations of disorder.
We observe spectral bands with high transmission (points a
and b), which correspond to topologically protected helical
edge states with backward or forward rotations [Figs. 4(a)
and 4(b)]. As shown in the small deviation of the trans-
mission, the topologically protected states achieve defect
immunity.
To identify this topological protection, we introduce a

new empirical parameter that measures the disorder-
immune transmission: Cimmuneðω; θÞ ¼ E½tðω; θÞ�, where
E½…� denotes the expectation value and tðω; θÞ is the power

FIG. 3. Hyperbolic QSHE. (a)–(c) Hyperbolic gauge for a uniform magnetic field: (a) seed polygon, (b) polygons in the next epoch,
and (c) the final result. The blue and green arrows in (a) and (b) denote the gauge field assigned in the first and second epoch,
respectively. φq;p in (c) represents the gauge field from the pth to qth element. (d)–(f) CðnÞ

edge as a function of ω and θ: (d) Euclidean lattice
with K ¼ 0, and (e),(f) hyperbolic lattices of (e) K ¼ −1.26 and (f) K ¼ −2.09. ω0 ¼ 1. All other parameters are the same as those
in Fig. 2.
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transmission spectrum for each realization of disorder at a
magnetic field B ¼ θ. We compare Cimmuneðω; θÞ in
Euclidean [Fig. 4(d)] and hyperbolic lattices with different
curvatures K [Figs. 4(e) and 4(f)], achieving the hyperbolic
counterpart of the Hofstadter butterfly: the narrower spec-
tral-magnetic (ω-θ) bandwidth of topological protection for
larger jKj. Furthermore, while the Euclidean lattice presents
a Cimmune map analogous to the conventional Hofstadter
butterfly [31,35] [Fig. 4(d)], the Cimmune maps for hyper-
bolic lattices [Figs. 4(e) and 4(f)] display a significant

discrepancy from the CðnÞ
edge maps in Figs. 3(e) and 3(f). This

distinction demonstrates that Cimmune extracts “disorder-
immune” topologically protected edge states from the
entire (topologically trivial or nontrivial) edge states.
Despite the continuous Schläfli symbols of Euclidean

f4; 4g and hyperbolic f4; q ≥ 5g lattices, the patterns of
Hofstadter’s butterflies are classified according to the
lattice geometry. This distinction emphasizes different
intrinsic geometries of Euclidean and hyperbolic planes
[16,17], which lead to the quantized polygon angle sum
depending on fp; qg (Supplemental Material, Note S1 in
[20]). Such a distinct unit polygon results in fp; qg-
quantized interelemental interactions, which differentiate
the pattern of the Hofstadter’s butterfly in each lattice.
Because of the lack of periodicity in hyperbolic lattices,

the interpretation of a fractal energy spectrum in
Hofstadter’s butterfly, focusing on the commensurability
between the period and magnetic length [31,35], cannot be

straightforwardly extended to hyperbolic counterparts.
Instead, the origin of the narrower ω-θ bandwidths of
the topological protection in hyperbolic lattices [Figs. 4(e)
and 4(f)] is explained by their boundary-dominant geom-
etry (Supplemental Material, Note S5 in [20]). A high
density of topologically trivial edge states from the boun-
dary-dominant geometry hinders the exclusive excitation of
topologically nontrivial edge states. The general trend
of the narrower ω-θ bandwidth due to more enhanced
boundary dominance is maintained for higher q values
(Supplemental Material, Note S6 in [20]).
The result in Fig. 4 shows that increased lattice degrees of

freedom in non-Euclidean geometry allow control of topo-
logically protected functionalities by exploiting new patterns
of Hofstadter’s butterflies. For example, topological hyper-
bolic lattices with the narrower ω-θ bandwidth enable
frequency-selective and tunable wave propagations while
preserving defect immunity (Supplemental Material, Note
S7 in [20] for switching of topologically protected prop-
agations with high on-off ratios). This result also implies that
non-Euclidean geometry with smaller q values—elliptic
geometry—will also provide extended design freedom by
manipulating ω-θ responses.
We have demonstrated topological properties in hyper-

bolic geometry. By employing a tree-type gauge design, we
achieved a topological hyperbolic lattice that leads to the
hyperbolic counterpart of the QSHE. Using two empirical
parameters that measure the edge confinement (CðnÞ

edge) and

FIG. 4. Topological protection and Hofstadter’s “hyperbolic” butterflies. (a),(b) Transmission through topologically protected edge
states in the lattice f4; 5g: (a) backward (t ¼ 99.50%) and (b) forward (t ¼ 98.51%) transmission [black arrows in (c)]. Different radii of
the elements represent diagonal disorder. (c) Transmission spectrum at B ¼ θ ¼ 0.9π (red line, average; gray regions, standard
deviation). (d)–(f) Cimmune for (d) Euclidean and (e),(f) hyperbolic lattices. For the cases in (c)–(f), we examine an ensemble of 50
realizations of disorder. The case in (c) denotes the white dashed line in (e). Δ ¼ ω0=200 for all cases. The coupling between the
boundary elements and the input or output waveguide is 0.08ω0. All other parameters are the same as those in Fig. 3.
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defect immunity (Cimmune), we classified a high density of
edge states in hyperbolic lattices in terms of topological
protection. With the narrower ω-θ bandwidth for defect
immunity in hyperbolic lattices, we expect frequency-
selective and modulation-sensitive photonic devices with
error robustness. Our approach also inspires topological
hyperbolic lattices in acoustics [34] or cold atoms [32].
As observed in distinct patterns of Hofstadter’s Euclidean

and hyperbolic butterflies, hyperbolic lattices are topologi-
cally distinguished from Euclidean lattices in terms of band
theory. This topological uniqueness is emphasized with the
geometrical nature of hyperbolic lattices: the scale invariance
and high edge-to-bulk ratio. We expect the use of the
geometrical nature of hyperbolic geometry, which will
impose scale-free properties on materials [36], as implied
in Internet infrastructures [24]. A real-space construction of
hyperbolic lattices using origami design [29] or nanopho-
tonic curved space [37–40] may also be of interest.
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