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The low energy systems of three or four neutrons are treated within the adiabatic hyperspherical
framework, yielding an understanding of the low energy quantum states in terms of an adiabatic potential
energy curve. The dominant low energy potential curve for each system, computed here using widely
accepted nucleon-nucleon interactions with and without the inclusion of a three-nucleon force, shows no
sign of a low energy resonance. However, both systems exhibit a low energy enhancement of the density of
states, or of the Wigner–Smith time delay, which derives from long-range universal physics analogous to
the Efimov effect. That enhancement could be relevant to understanding the low energy excess of correlated
four-neutron ejection events observed experimentally in a nuclear reaction by Kisamori et al. [Phys. Rev.
Lett. 116, 052501 (2016)].
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The three- and four-neutron (3n and 4n) systems are
intriguing and important problems in few-nucleon funda-
mental physics that deserve a comprehensive, deep theo-
retical understanding. While no 4n bound state is generally
believed to exist, there have been speculations for decades
about the possible existence of a long-lived resonance in the
four-particle scattering continuum. Those early specula-
tions have evolved into renewed interest triggered by the
recent experimental observation of an enhanced signal of
four low energy neutrons emerging together, which was
tentatively interpreted as a possible 4n resonance (or
bound) state, by Kisamori et al. [1]. The present Letter
investigates the possible existence of a low energy reso-
nance-like enhancement of the density of states in both the
4n and 3n systems, using well-established nucleon-nucleon
(NN) interactions with and without the inclusion of a three-
nucleon force (3NF) and also using a simple Gaussian
potential adjusted to match the neutron-neutron (nn)
scattering length and effective range.
In our study, the low energy regions of the 3n and 4n

systems are explored using the adiabatic hyperspherical
representation, which has a strong track record of success-
fully predicting and interpreting resonances for atomic
systems [2,3]. Our results with the aforementioned poten-
tials are consistent with strong enhancements of the low
energy density of states (or Wigner–Smith time delay)
for both the 3n and 4n systems, although the nature of
the potential curves and the eigenphaseshift energy

dependencies make it clear that the enhanced density of
states should not be viewed as a resonance. Moreover,
neither the 3n nor the 4n system is close to possessing a
bound state. Our analysis also demonstrates how the
density of states enhancement can be understood in terms
of universal physics considerations that are closely related
to the Efimov effect [4–6].
Remarkably, theoretical treatments to date have not

been able to reach a consensus about whether a 3n or
4n resonance exists, that is consistent with the presently
understood NN interaction potentials. The need for more
theoretical input into this problem is therefore clear, given
the conflicting conclusions reached so far by competing
theoretical methods. Specifically, some of the theories
published to date are consistent with the claimed exper-
imental observation of a low energy resonance in the 4n
system [7–9], whereas alternative theoretical analyses are
incompatible with a resonance or bound state interpretation
of the experimental measurement [10–16]. An advantage of
the present method based on the adiabatic hyperspherical
representation is that the absence of a resonance state is
immediately clear visually after inspecting the relevant
adiabatic potential energy curve for the system. Moreover,
our quantitative calculation shows that a nonresonant
density of states enhancement is guaranteed to be present
at low energies, owing to the attractive hyperradial potential
energy at very long range. Specifically, this connects with
the universal behavior of three- and four-fermion systems
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close to the unitarity limit. We propose that such a density
of states enhancement could improve our understanding of
the enhanced production of four low energy neutrons in the
experiment of Kisamori et al. [1], even in the absence of a
tetraneutron resonance state.
The theoretical approach adopted here starts considering

realistic nuclear interaction Hamiltonians. They are con-
structed by an overall fit of the existing neutron-proton and
proton-proton data and, invoking charge symmetry invari-
ance, they can be applied to describe neutron systems as
well. In particular, we have considered the AV18 and AV8’
NN potentials [17], as well as the recent local NN potentials
derived within the chiral effective field theory approach
[18,19], in particular the model NV2-Ia. With the AV18
potential, we have performed calculations with the inclu-
sion of the Urbana and Illinois 3NFs [20–22]. It should be
noted that the two-body singlet nn scattering length is large
and negative, believed to be approximately a ≈ −18 fm,
consistently reproduced by the NN interactions considered.
Motivated by the large value of the nn scattering length, we
have also carried out calculations using a simple single
Gaussian potential, adjusted to describe that value and the
corresponding effective range, in order to explore con-
nections with universal behavior and the unitary limit of the
three- and four-fermion systems. The form of the Gaussian
potential used is VðrÞ ¼ V0 expð−r2=r20Þ, where V0 is the
strength of the potential and r0 is the range. The parameters
used for singlet and triplet interactions are given in Table I.
In all our calculations, it has been found that the use
of a particular form of NN potential, with or without the
inclusion of the 3NF, has comparatively little influence on
the results; in particular the inclusion of 3NFs only slightly
modified the potential curves around 1–2 fm, making them
more repulsive. The 3n and 4n Schrödinger equations are
then solved in the adiabatic hyperspherical representation
[2,23–25], which has a proven track record in correctly
predicting resonances, especially in atomic and molecular
physics contexts. After one diagonalizes the fixed-hyper-
radius Hamiltonian, Hρ¼const, the ρ-dependent eigenvalues
UνðρÞ act as adiabatic potential energy curves (and cou-
plings Wν;ν0 ) that often make it immediately and visibly
clear whether or not there is a resonance, and they yield an
immediate interpretation if a resonance does exist [4]. Note
for reference that two successful predictions and interpre-
tations of atomic shape resonances, carried out within the
adiabatic hyperspherical framework in Refs. [2,3], were

eventually confirmed by experiments [26,27] and by other
theory for the singlet electronic Lπ ¼ 1− states of the
negative ions H− and Ps−.
The greatest numerical challenge in the present study is the

calculation of the 4n and 3n potential energy curves UνðρÞ
and the elements of the coupling matrix operatorWν;ν0 ðρÞ ¼
−ðℏ2=2μÞ½hΦνjð∂=∂ρÞΦν0 i ð∂=∂ρÞ þ hΦνjð∂2=∂ρ2 ÞΦν0 i �,
where Φν are the adiabatic eigenfunctions. Our approach
tackles this variationally at each value of ρ by expanding the
unknown adiabatic eigenfunctions (Φν) into a basis set. Two
different choices of the basis set have been implemented in
our study. The first is a set of coupled hyperspherical
harmonics and spinors adapted to the symmetry of interest,
e.g., Jπ ¼ 0þ for the tetraneutron. The second type of basis
set implemented to solve the fixed-ρ Schrödinger equation is
a linear combination of correlated Gaussian functions
[28–31]. Following diagonalization of Hρ¼const at each ρ,
a Rayleigh–Ritz upper bound on the exact potential
UνðρÞ is obtained. The following theorem is important for
our subsequent analysis below: When the hyperradial
Schrödinger equation is solved in the lowest potential curve,
including also just the diagonal nonadiabatic coupling term
Wν;νðρÞ, the lowest computed energy of the system will be a
rigorous upper bound to the exact ground state energy.
Much of our detailed analysis of the resonance physics has
been performed in the adiabatic approximation, which
neglects off-diagonal coupling terms. Our tests show its
general validity for these 3n and 4n systems.
To understand the basic idea of the formulation, consider

first the one-dimensional hyperradial Schrödinger equa-
tion. The single adiabatic term variational ansatz for
the wave function is written for N particles in their
relative frame as Ψðρ;ΩÞ ¼ ρ−ð3N−4Þ=2Φ0ðρ;ΩÞF0ðρÞ,
where Φ0ðρ;ΩÞ is the lowest adiabatic eigenfunction of
Hρ¼const with eigenvalue U0ðρÞ and repulsive diagonal
correction term W00ðρÞ. The radial equation then takes the
form

−
ℏ2

2μ

d2

dρ2
F0ðρÞ þ ½u0ðρÞ − E�F0ðρÞ ¼ 0; ð1Þ

where the full, effective adiabatic potential in the lowest
channel, including the diagonal correction term, is

u0ðρÞ≡U0ðρÞ þW00ðρÞ: ð2Þ

Note that u0ðρÞ includes the effective centrifugal term
ðℏ2=2μÞf½ð3N − 6Þð3N − 4Þ�=4ρ2g associated with the
elimination of first order hyperradial derivatives from the
effective radial Schrödinger equation. Here μ is a reference
mass (we use μ ¼ m=2 with m the neutron mass), and the
hyperradius ρ for equal mass particles is defined by
ρ2 ≡ ð2=NÞΣi<jr2ij, where rij is the distance between
neutrons i and j.

TABLE I. Simple Gaussian parameters used for singlet and
triplet two-body interactions. The parameters were extracted from
fits to the central component of the AV80 potential.

State V0 (MeV) r0 (fm)
1S −31.7674 1.7801
3P 95.7280 0.8809
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It is known from universality studies that for N-particle
systems dominated by a large magnitude two-body scatter-
ing length a, their lowest long-range hyperradial potential
energy curve in the continuum has the following asymp-
totic form at ρ → ∞:

u0ðρÞ →
ℏ2

2μ

�
leffðleff þ 1Þ

ρ2
þ C

a
ρ3

�
; ð3Þ

where C and leff depend on the number of particles and
their statistics; their values are given in Table II below for
the symmetries considered in the present study. The
adiabatic correction term W00ðρÞ decays asymptotically
at least as fast as ρ−4 for the 3n and 4n systems and
therefore has no role in the above decomposition. For the
present problem, where the nn scattering length is large and
negative, the attractive long-range term proportional to
a=ρ3 has key implications for the low energy Wigner–
Smith time delay [32,33], Q¼2ℏdδ=dE, which also mea-
sures the density of states of the system [34]. In particular,
the density of states diverges like E−1=2 as E → 0 since the
scattering phaseshift δðEÞ at low energy can be seen
perturbatively to equal δ → −Cak=ð2leff þ 2leff2Þ as the
wave number k → 0.
Next consider the numerical computation of the adia-

batic hyperspherical potential energy curves for the 3n and
4n systems. We use two different variational basis sets, an
expansion into hyperspherical harmonics (extremely accu-
rate at small and intermediate values of ρ) [36–38], and an
expansion into correlated Gaussian basis functions (more
accurate at large ρ) [28–30]. The hyperspherical harmonic
(HH) basis produces well-converged results for the quan-
tities of interest UνðρÞ and Wν;νðρÞ in a relatively large
range of ρ values: 0–50 fm and 0–30 fm for 3n and 4n,
respectively. At the end of this region, all potential models
considered almost collapse onto a single adiabatic curve,
and therefore one particular model can be used for
calculating the adiabatic curves beyond that point. To this
purpose we have used the correlated Gaussian hyper-
spherical basis set (CGHS) [28,30] in connection with
the AV8’ interaction, which has a Gaussian expansion that
efficiently connects with the CGHS method [39].

The lowest adiabatic hyperspherical potential energy
curves in the most attractive symmetries of the 4n and 3n
systems, namely 0þ and 3

2
−, respectively, are plotted in

Fig. 1. At a glance it is immediately apparent that the lowest
potential curve for both systems is totally repulsive and
moreover positive at all hyperradii, which guarantees both
that there is no bound state and that there can be no
resonance state in the low energy range below 10 MeV.
Nevertheless, there is extensive attraction in the system,
which is apparent from the fact that the potential curve lies
everywhere well below the upper dashed curve that would
apply if there were zero interaction between the neutrons.
Over much of the range of ρ, in fact, both systems are
slightly closer to the unitary-limiting potentials that would
emerge if the two-body potential was made even more
attractive to give an infinite singlet nn scattering length (i.e.,
closer to the lower dashed curves in Fig. 1) than to the
noninteracting limit.
The HH expansion includes the eigenfunctions of the

grand angular momentum operator K2, with eigenvalues
KðK þ 7Þ (4n) andKðK þ 4Þ (3n), with values ofK ≥ 2 up
to a maximum value Kmax ¼ 140 (4n) and Kmax ¼ 801
(3n). In the CGHS expansion, only natural parity states are
treated with 208 L ¼ 0 and 92 L ¼ 2 basis functions for the
4n system and 57 L ¼ 1 basis functions for the 3n system.
The potentials u0ðρÞ in Fig. 1 include the repulsive diagonal
correction termW00ðρÞ and, in the 4n case, is shown for the
largest value of Kmax (represented by the dash–dotted
curve). The upper dashed curve is the expected asymptotic
form of the lowest noninteracting potential curve, namely
uNI
0 ðρÞ → 30ℏ2=2μρ2 for the 4n 0þ symmetry. The lower

dashed curve is the effective potential at unitarity, i.e.,
uuniv0 ðρÞ ¼ ½leff;uðleff;u þ 1Þℏ2�=2μρ2, with leff;u given in
Table II for both the 3n and 4n systems; these values
would result if the neutrons interacted through a zero-range
potential that produces an infinite singlet nn scattering
length [35,40]. This reduction of the effective centrifugal
barrier is reminiscent of Efimov physics, although there is
no true Efimov effect in this system even at unitarity, i.e., no
infinity of bound levels converging to zero energy as one
finds for three equal mass bosons at unitarity [4,41].
Again, 3NFs have only a minor effect on these systems at

short distances, without modifying the long-range part.
This relative unimportance appears to be a consequence of
the greater Pauli repulsion on a system of three or more
neutrons, which suppresses the probability for more than
two neutrons to come close to each other. This suppression
does not occur for a mixed system of up to four protons and
neutrons, which can all penetrate to much closer inter-
particle or hyperradial distances simultaneously. For this
reason, our simple adiabatic potential curve analysis is
adequate to explain the absence of both bound and resonant
states of the 3n and 4n systems.
Key evidence for our conclusions derives from the

energy dependent scattering phaseshift δðEÞ in the lowest

TABLE II. Unitarity (subscript u) and nonunitarity (no sub-
script) long-range (ρ → ∞) coefficients of the lowest adiabatic
potential [see Eq. (3)]. Our values of leff extracted at unitarity are
shown (a), as are the corresponding values at unitarity obtained in
accurate calculations by Yin and Blume [35] (b).

N ðLSÞJπ leff C lðaÞeff;u lðbÞeff;u

3 ð1 1
2
Þ3
2
− 5=2 15.22 1.275 1.2727(1)

4 ð00Þ0þ 5 86.68 2.027 2.0091(4)
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adiabatic channel representing the 3n to 3n continuum and
for the 4n to 4n continuum, shown as the inset in Fig. 2.
Note that, while the results shown here have been obtained
in the single-channel adiabatic hyperspherical approxima-
tion, numerical tests have also been carried out with full
coupled-channel calculations of the multichannel scattering
matrix and time delay eigenvalues; there we include all
diagonal and off-diagonal nonadiabatic couplings Wν;ν0 ,
and the results agree quantitatively with the adiabatic
results presented here. In fact, the phaseshifts and the time
delays change only by a few percent when including the
couplings with other adiabatic functions.
The Wigner–Smith time delay, defined in general

through the scattering matrix S as QðEÞ ¼ iℏSdS†=dE,
which reduces for a single potential curve to 2ℏdδðEÞ=dE,
also can be viewed (after division by 2πℏ) as the density of
states enhancement associated with particle interactions.
The Wigner–Smith time delay can be viewed as the time
difference between an unscattered free-particle wave packet
and the scattered wave packet off a potential scatterer. A
resonance feature would yield a rapid increase in the phase
and thus a large time delay, representing the temporary
“capture” of an incident wave packet during the scattering
process, resulting in a metastable state [33,42]. The con-
nection between the time delay and the density of states has

FIG. 1. (a) Hyperspherical potential curve for the most attrac-
tive channel (0þ for 4n, 3

2
− for 3n in the inset) for both the 4n and

3n systems. Comparison of the lowest 0þ 4n adiabatic hyper-
spherical potential energy curves computed with the HH method
(blue dash–dotted curve, which shows the best calculation for the
AV18 Hamiltonian with Kmax ¼ 140 and is not accurately
converged at hyperradii beyond approximately 20 fm). The
lowest solid magenta 4n (and 3n in the inset) potential energy
curve is computed using the CGHS method applied to the AV8’
Hamiltonian. The open circles are the adiabatic potentials
calculated using a simple NN Gaussian potential (see text).
The lower dashed gray curves in both the main figure and the
inset are the expected long-range ρ−2 potentials at unitarity for
this symmetry of the 4n and 3n systems, i.e., in the infinite
scattering length limit (see text and Table II). The upper
dashed gray curves are the corresponding potentials for non-
interacting neutrons. Clearly there is no local minimum
and no local maximum of the type that is always associated
with a quasibound resonance. (b) Plot of the function CðρÞ≡
ðρ=aÞ½ρ2u0ðρÞ2μ=ℏ2 − leffðleff þ 1Þ� for the 3n case. According
to Eq. (3), we should obtain Cðρ → ∞Þ ¼ C, where C is the
coefficient listed in Table II. We observe the slow convergence for
large ρ of the adiabatic potentials calculated using the HH basis.
However, it has to be noted that where the convergence is
achieved, the functions CðρÞ obtained for the different inter-
actions used in this work almost collapse onto a single curve.
Noticeably, this happens already for fairly small values of ρ,
showing that the adiabatic potentials are already universal at
moderate values of the hyperradius. In fact, the limit CðρÞ ¼ C is
reached only for ρ > 500 fm.

FIG. 2. Rescaled Wigner–Smith time delays 2
ffiffiffiffi
E

p
dδ=dE for the

AV8’ interaction (solid curves) and the simple Gaussian inter-
action (open circles). The 4n results are the higher curve, the 3n
results the lower. These are computed in the lowest adiabatic
hyperspherical potential energy curve for the 4n 0þ symmetry,
and for the 3n 3

2
− symmetry. These show no local maximum that

would be expected for a low energy resonance. Note the E−1=2

dependence of the Wigner–Smith time delay (or density of states)
in the zero energy limit, a consequence of the ρ−3 term in the
long-range potentials for the 3n and 4n systems. The inset shows
the elastic scattering phaseshift versus the square root of the
energy. Both cases show the proportionality to

ffiffiffiffi
E

p
dependence

that holds in the zero energy limit, a consequence of the ρ−3 long-
range potential energy term. The open circles that lie almost
exactly on top of these curves are computed using the lowest 3n
and 4n hyperspherical potential curves based on a simple two-
body Gaussian potential interaction (see text).
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been shown through a normalization condition of scattering
solutions in the contexts of one-dimensional scattering [42]
and multi-channel quantum defect theory [34]. A recent
application shows a link between the density of states and
time delay through a calculation of excess electron dis-
tribution of a Rydberg electron near a perturber [43]. QðEÞ
is reported in Fig. 2 for the 3n and 4n systems, in each case
for both the AV8’ and the simple Gaussian interaction; it
has been rescaled by

ffiffiffiffi
E

p
since the product remains finite at

E → 0. But most critically for our conclusions, the density
of states shows no local maximum that would be expected
for a low energy resonance in either system. Both curves do
make clear the E−1=2 dependence of QðEÞ in the zero
energy limit, a consequence of the ρ−3 term in the long-
range potentials for both the 3n and 4n systems.
Consider now the relationship between our present

conclusions and some of the alternative theoretical inves-
tigations that have been carried out previously for the 3n
and 4n systems. The studies closest to the present spirit, as
true scattering theory treatments, are Refs. [7,11,12]. There
is a strong attraction in the 3n and 4n systems, evidently,
but this attraction competes with strong Pauli repulsion.
While the attraction does create a negative ρ−3 term in the
long-range hyperradial potential, it cannot overcome the
ρ−2 repulsion that is far larger for three or four neutrons
than would be the case if two or even one of the particles
would be replaced by a proton. It is this dominating
repulsion that prevents the lowest 3n and 4n hyperradial
potential curves from possessing a local minimum asso-
ciated with enough attraction to bind these systems or even
quasibind these systems in the form of a resonance.
One fundamental question is the extent to which the 3n

and 4n systems fit the pattern of universality that has been
well-established for cold fermionic atom systems [5,44,45],
especially in the context of the Bardeen-Cooper-Schrieffer
to Bose-Einstein Condensate (BCS-BEC) crossover prob-
lem [46]. We tackle this question by introducing a very
simple attractive potential with a single Gaussian for the
singlet nn interaction, with a strength and range adjusted to
give the correct singlet nn scattering length and effective
range. Two different choices for the triplet nn interaction
have been tested, either neglecting it altogether or setting a
Gaussian that reproduces the AV8’ p-wave scattering
volume and effective range; those two models are indis-
tinguishable on the scale of Figs. 1 and 2. Results from this
simple Gaussian Hamiltonian for the 3n system are shown
in the inset of Fig. 1(a) as open circles on top of the AV8’
results shown as the solid magenta potential curve; remark-
ably, the results are nearly indistinguishable.
Finally, we can speculate about the experimental obser-

vation of enhanced 4n coincident events in the observation
of Kisamori et al. [1]. Even though, in the analysis of that
experiment, those enhanced low energy events seemed to
indicate existence of a low energy tetraneutron, we specu-
late that the dramatically enhanced low energy density of

states that is evident in our calculations (increasing as
1=

ffiffiffiffi
E

p
) could be the origin of the strong low energy 4n

signal. The fact that an enhanced density of final states
produces enhanced cross sections for any process resulting
in those final states is familiar from elementary quantum
textbook treatments, e.g., of the “Fermi golden rule.” We
stress that this enhancement of the 4n density of states is
predicted to exist even though no resonance and no bound
state exists for the tetraneutron system.
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ported in part by the U.S. National Science Foundation,
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Quantum Science and Engineering Institute.
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