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Parton showers are among the most widely used tools in collider physics. Despite their key importance,
none so far have been able to demonstrate accuracy beyond a basic level known as leading logarithmic
order, with ensuing limitations across a broad spectrum of physics applications. In this Letter, we propose
criteria for showers to be considered next-to-leading logarithmic accurate. We then introduce new classes
of shower, for final-state radiation, that satisfy the main elements of these criteria in the widely used
large-NC limit. As a proof of concept, we demonstrate these showers’ agreement with all-order analytical
next-to-leading logarithmic calculations for a range of observables, something never so far achieved for
any parton shower.
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High-energy particle collisions produce complex had-
ronic final states. Understanding these final states is of
crucial importance in order to extract maximal information
about the underlying energetic scattering processes and the
fundamental Lagrangian of particle physics. To do so, there
is ubiquitous reliance on general purpose Monte Carlo
event generators [1], which provide realistic simulations
of full events. A core component of general purpose
Monte Carlo event generators is the parton shower, a
subject of much recent research [2–28]. Partons refer to
quarks and gluons, and a shower aims to encode the
dynamics of parton production between the high-energy
scattering (e.g., production of electroweak or new-physics
states) and the low scale of hadronic quantum chromo-
dynamics (QCD), at which experimental observations
are made.
Typically parton showers are built using a simple

Markovian algorithm that takes an n-parton state and
stochastically maps it to an (nþ 1)-parton state. The
iteration of this procedure, e.g., starting from a two-parton
state, builds up events with numerous partons. A further
step, hadronization, then maps the partons onto a set of
hadrons. Even though this last step involves modeling

[29,30], many of the features of the resulting events are
driven by the parton shower component which is, in
principle, within the realm of calculations in perturbative
QCD. This is because the showering occurs at momentum
scales where the strong coupling, αs, is small.
Much of collider physics, experimental and theoretical

[31–34], is moving towards high precision, especially in
view of large volumes of data collected so far at CERN’s
Large Hadron Collider. On the theoretical front many of the
advances either involve approximations with a small
number of partons, or else are specific to individual
observables. Parton showers, in contrast, use a single
algorithm to describe arbitrary observables of any complex-
ity. This versatility comes at a cost: lesser accuracy for any
specific observable and, quite generally, at best only limited
knowledge [35–38] of what the accuracy even is for a given
observable. In fact there is currently no readily accepted
criterion for categorizing the accuracy of parton showers.
One novel element that we introduce in this Letter is
therefore a set of criteria for doing so.
The role of showers is to reproduce emissions across

disparate scales. Our first criterion for accuracy starts by
structuring this phase space: there are three phase space
variables per emission, and two of them (e.g., energy and
angle) are associated with logarithmic divergences in the
product of squared matrix element and phase space. We
define leading logarithmic (LL) accuracy to include a
condition that the shower should generate the correct
effective squared tree-level matrix element in a limit where
every pair of emissions has distinctly different values for
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both logarithmic variables. At next-to-leading logarithmic
(NLL) accuracy, we further require that the shower generate
the correct squared tree-level matrix element in a limit
where every pair of emissions has distinctly different values
for at least one of the logarithmic variables (or some linear
combination of their logarithms). Beyond NLL accuracy
we would consider configurations with a pair of emissions
(or multiple pairs) both of whose logarithmic variables
are similar.
To help make this discussion concrete, let us consider

showers that are not NLL accurate according to this
criterion: angular ordered showers [39–41] do not repro-
duce the matrix element for configurations ordered in
energy, but with commensurate angles, and this is asso-
ciated with their inability to correctly predict αnsLn (NLL)
effects for nonglobal observables [36]. Transverse-momen-
tum (kt) ordered showers with dipole-local recoil
[2,3,5,11,42,43] do not reproduce matrix elements for
configurations ordered in angle but with commensurate
transverse momenta, because of the way they assign
transverse recoil [37]. As a result they fail to reproduce
NLL effects in global observables such as jet broadenings.
Showers that omit spin correlations fail to reproduce (the
azimuthal structure of) matrix elements for configurations
ordered in angle but with commensurate energies [44–46],
and associated NLL terms.
Our second criterion for logarithmic accuracy tests,

among other things, the overall correctness of virtual
corrections. For showers that intertwine real and virtual
corrections directly through unitarity, once the generation
of tree-level matrix elements is set, there is only one
(single-emission) degree of freedom that remains, namely
the choice of scale and scheme for the strong coupling for
each emission, as a function of its kinematics. To claim
NLL accuracy, we will require the resulting shower to
reproduce known analytical NLL resummations across
recursively infrared and collinear safe (rIRC) [47] global
and nonglobal two-scale observables as well as (subjet)
multiplicities.
The challenge that we concentrate on here is to formulate

showers that can handle each of two regions correctly: the
energy-ordered, commensurate-angle region; and the angu-
lar-ordered, commensurate kt region. Recall that existing kt
and angular-ordered showers can each handle one of these
limits, but not both. Strictly, full NLL accuracy also
requires attention to the angular-ordered, commensurate
energy region. However, given that general solutions for the
required spin correlations are known to exist [45,48–50],
and that they affect only a small subset of observables, we
postpone their study to future work. For now, we also
restrict our attention to final-state showers (i.e., lepton-
lepton collisions), massless quarks and the large-NC limit.
Our guiding principle will be that soft emissions should not
affect, or be affected by, subsequent emissions at disparate
rapidities.

The two classes of shower that we develop both consider
emissions from colour dipoles. We consider a continuous
family of shower evolution variables v, parameterised by a
quantity β in the range 0 ≤ β < 1, where β ¼ 0 corre-
sponds to transverse-momentum ordering. The phase space
involves two further variables besides v: a pseudorapidity-
like variable within the dipole, η̄, and an azimuthal angle ϕ.
We start with a shower with dipole-local recoil (the

PanLocal shower). Its mapping for emission of momentum
pk from a dipole fp̃i; p̃jg is

pk ¼ akp̃i þ bkp̃j þ k⊥; ð1aÞ

pi ¼ aip̃i þ bip̃j − fk⊥; ð1bÞ

pj ¼ ajp̃i þ bjp̃j − ð1 − fÞk⊥; ð1cÞ

where k⊥ ¼ kt½n⊥;1 cosϕþ n⊥;2 sinϕ�, with n2⊥;m ¼ −1,
n⊥;m · p̃i=j ¼ 0 (m ¼ 1, 2), n⊥;1 · n⊥;2 ¼ 0, and

kt ¼ ρveβjη̄j; ρ ¼
�

s{̃s|̃
Q2s{̃ |̃

�β
2

: ð2Þ

Here s{̃ |̃ ¼ 2p̃i · p̃j, s{̃ ¼ 2p̃i ·Q, and Q is the total event
momentum. The light-cone components of pk are given by

ak ≡
ffiffiffiffiffiffiffiffiffi
s|̃
s{̃ |̃s{̃

r
kteþη̄; bk ≡

ffiffiffiffiffiffiffiffiffi
s{̃

s{̃ |̃s|̃

r
kte−η̄; ð3Þ

The quantity f in Eq. (1) determines how transverse recoil
is shared between pi and pj, cf. below. The ai, bi, aj, bj are
fully specified by the requirements p2

i=j ¼ 0, ðpi þ pj þ
pkÞ ¼ ðp̃i þ p̃jÞ and pi ¼ p̃i for kt → 0 and are given
explicitly in Sec. 1 of the Supplemental Material [51].
In the event center-of-mass frame, η̄ ¼ 0 corresponds to

a direction equidistant in angle from p̃i and p̃j. For
soft-collinear emissions, the physical pseudorapidity,
η ¼ − ln tanðθ=2Þ, with respect to the emitter is
η ¼ jη̄j þ ð1=βÞ ln ρ. Soft-collinear emissions from distinct
dipoles but with the same ln v fall onto common contours in
the Lund plane [52], kt ¼ veβjηj.
For eþe− → hadrons, the shower starts from a two-

parton qq̄ state, S2. The probability of evolving from
Sn → Snþ1 in a given slice d ln v of evolution variable is

dPn→nþ1

d lnv
¼

X
dipolesf{̃;|̃g

Z
dη̄

dϕ
2π

αsðktÞþKα2sðktÞ
π

× ½gðη̄ÞakP{̃→ikðakÞþgð−η̄ÞbkP|̃→jkðbkÞ�; ð4Þ

with a function gðη̄Þ that satisfies gðη̄Þ þ gð−η̄Þ ¼ 1, has
gðη̄Þ ¼ 0 (1) for sufficiently negative (positive) η̄, and
smoothly transitions around η̄ ¼ 0. The P{̃→ikðzÞ are
first-order splitting functions [53–55], normalized so that
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limz→0 zP{̃→ikðzÞ ¼ 2C with C ¼ CF ¼ CA=2 ¼ ð4=3Þ
(our large-NC approximation, augmented [56] with
nf ¼ 5). The specific choice of gðη̄Þ is not critical here,
while the splitting functions are standard. Both are detailed
in Sec. 1 of the Supplemental Material [51]. The MS
coupling, αsðktÞ, needs at least two-loop running, and K ¼
ð1=2πÞf½ð67=18Þ − ðπ2=6Þ�CA − ð5=9Þnfg [57].
The PanLocal shower comes in two variants. In a dipole

variant, inspired by many earlier dipole showers [2,5,11],
the P{̃→ikðakÞ [P|̃→jkðbkÞ] term of Eq. (4) is associated with
the choice f ¼ 1 (f ¼ 0) in Eq. (1). In an antenna variant,
inspired by Refs. [3,43], we take a common fðη̄Þ for both
terms and set fðη̄Þ ¼ gðη̄Þ.
A key difference relative to earlier showers is that our

transition in transverse recoil assignment between i and j
takes place at η̄ ≃ 0, i.e., equal angles between the p̃i and p̃j

directions in the event center-of-mass frame (note similar-
ities with DEDUCTOR [9]). This differs from the common
choice of a transition in the middle of the dipole center-of-
mass frame. Our choice ensures that a given emission will
not induce transverse recoil in earlier, lower-rapidity
emissions. Additionally, we require β > 0 in the definition
of the ordering variable, Eq. (2). This causes emissions at
commensurate kt and widely separated in jηj to be
effectively produced in order of increasing jηj, so that
any significant kt recoil is always taken from the extrem-
ities of a (hard) qgf…ggq̄ dipole chain. Together, these two
elements provide a solution to the problem observed in
Ref. [37], i.e., that recoil assignment in common dipole
showers causes multigluon emission matrix elements to be
incorrect in the limit of similar kts and disparate angles,
starting from α2s , leading to incorrect NLL terms.
Note that with dipole-local recoil, NLL correctness also

requires β < 1, because with β ≥ 1 the kinematic constraint

associated with fixed dipole mass means that a first
emission cuts out regions of phase space for a second
emission at similar ln v.
A second class of shower can be constructed with global,

i.e., event-wide recoil (the PanGlobal shower). It can be
formulated in largely the same terms as the dipole-local
recoil shower, but with a two-step recoil procedure. In the
first step one sets

p̄k ¼ akp̃i þ bkp̃j þ k⊥; ð5aÞ
p̄i ¼ ð1 − akÞp̃i; ð5bÞ

p̄j ¼ ð1 − bkÞp̃j: ð5cÞ

The second step is to apply a boost and rescaling to the full
event (including the p̄i;j;k momenta) so as to obtain final
momenta fpg whose sum gives Q. This approach assigns
transverse recoil dominantly to the most energetic particles in
the event. Thus emission from a hard qgf…ggq̄ dipole string
transfers its recoil mostly to the hard q and q̄ ends. This
ensures that one reproduces a pattern of independent emis-
sion for commensurate-kt and angular-ordered gluons, while
also retaining the correct (dipole) pattern for energy-ordered,
commensurate angles. This holds even for β ¼ 0, i.e., with kt
ordering. Values of β ≥ 1 remain problematic, however. Note
that the PanGlobal shower has power-suppressed routes to
highly collimated events. These compete with normal
Sudakov suppression, as observed also for PYTHIA8 [37].
We have verified that such effects are small even at the very
edges of future (FCC-hh [58]) phenomenologically acces-
sible regions. Nevertheless, ultimately one may wish to
explore alternative global recoil schemes.
The next step is to compare our showers to NLL

observables.Relative to earlier attempts at such comparisons

FIG. 1. Left: distribution for the difference in azimuthal angle between the two highest-kt primary Lund declusterings in the PYTHIA8
dipole shower algorithm, normalized to the NLL result [51,66], Sec. 4 of the Supplemental Material; successively smaller αs values keep
fixed αs ln kt1. Middle: the same for the PanGlobal(β ¼ 0) shower. Right: the αs → 0 limit of the ratio for multiple showers. This
observable directly tests part of our NLL (squared) matrix-element correctness condition. A unit value for the ratio signals success.
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[59], a critical novel aspect is how we isolate the structure
of NLL terms αnsLn. For each given observable v, with
L ¼ ln v, we consider the ratio to the true NLL result in the
limit αs ≡ αsðQÞ → 0 with fixed αsL. This helps us isolate
the NLL terms from yet higher-order contributions, which
vanish in that limit. Numerically, a parton shower cannot
be run in the αs → 0 limit for fixed αsL. However, with
suitable techniques [51] (Sec. 6), [60–62], one can run
multiple small values of αs and extrapolate to αs ¼ 0. We
examine not just our showers, but also our implementations
of two typical kt-ordered shower algorithms with dipole-
local recoil, those of PYTHIA8 [2] and DIRE V1 [11] [with the
αs þ Kα2s choice as in Eq. (4)].
A first test concerns the multiple-emission matrix

element. We have constructed our showers specifically
so that they reproduce the squared matrix elements in the
limits discussed above that are relevant for NLL accuracy.
A simple observable for testing this is to consider the two
highest-kt Lund-plane primary declusterings [63,64] with
transverse momenta kt1 and kt2 (originally defined for
hadronic collisions, the eþe− analogue is given in Sec. 4
of the Supplemental Material [51] and implemented with
FASTJET [65]). The αs → 0 limit for fixed αsL
(L ¼ ln kt1=Q), ensures that the two declusterings are soft
and widely separated in Lund-plane pseudorapidity η
(which spans jηj≲ jLj ∼ 1=αs). In this limit the full matrix
element reduces to independent emission and so the
difference of azimuthal angles between the two emissions,
Δψ12, should be uniformly distributed, for any ratio kt2=kt1
(recall that strongly angular-ordered soft emission is not
affected by spin correlations). We consider the Δψ12

distribution in Fig. 1.
The left-hand plot of Fig. 1 shows the PYTHIA8 dipole

algorithm (not designed as NLL accurate), while the middle
plot shows our PanGlobal shower with β ¼ 0. The dipole

result is clearly not independent of Δψ12 for αs → 0, with
over 60% discrepancies, extending the fixed-order conclu-
sions of Ref. [37]. The discrepancy is only ≃30% for gg
events (not shown in Fig. 1), and the difference would, e.g.,
skew machine learning [67] for quark versus gluon dis-
crimination. PanGlobal is independent of Δψ12. The right-
hand plot shows the αs → 0 limit for multiple showers. The
overall pattern is as expected: PanLocal works for β ¼ 0.5,
but not β ¼ 0, demonstrating that with kt ordering it is not
sufficient just to change the dipole partition to get NLL
accuracy. PanGlobalworks for β ¼ 0 and β ¼ 0.5. (Showers
that coincide forαs → 0, e.g., DIREV1 and PYTHIA8, typically
differ at finite αs, reflecting NNLL differences.)
Next, we consider a range of more standard observables

at NLL accuracy. They include the Cambridge
ffiffiffiffiffiffi
y23

p
resolution scale [68], two jet broadenings, BT and BW
[69], fractional moments, FC1−βobs , of the energy-energy
correlations [47], the thrust [70,71], and the maximum ui ¼
kti=Qe−βobsjηij among primary Lund declusterings i. Each of
these is sensitive to soft-collinear radiation as kt=Qe−βobsjηj,
with the βobs values shown in Fig. 2 (right). Additionally,
the scalar sum of the transverse momenta in a rapidity slice
[72], of full-width 2, is useful to test nonglobal logarithms
(NGLs). These observables all have the property that their
distribution at NLL can be written as [47,66,72–74]

Σðαs; αsLÞ ¼ exp ½α−1s g1ðαsLÞ þ g2ðαsLÞ þOðαnsLn−1Þ�;
ð6Þ

where Σ is the fraction of events where the observable is
smaller than eL (g1 ¼ 0 for the rapidity slice kt). We also
consider the kt-algorithm [75] subjet multiplicity [76],
Sec. 5 of the Supplemental Material [51].
Figure 2 (left) illustrates our all-order tests of the shower

for one observable,
ffiffiffiffiffiffi
y23

p
. It shows the ratio of the Σ as

FIG. 2. Left: ratio of the cumulative y23 distribution from several showers divided by the NLL answer, as a function of αs ln y23=2, for
αs → 0. Right: summary of deviations from NLL for many shower and observable combinations [either Σshowerðαs → 0; αsL ¼
−0.5Þ=ΣNLL − 1 or ½Nsubjet

showerðαs → 0; αsL2 ¼ 5Þ=Nsubjet
NLL − 1�= ffiffiffiffiffi

αs
p

]. Red squares indicate clear NLL failure; amber triangles indicate
NLL fixed-order failure that is masked at all orders; green circles indicate that all NLL tests passed.

PHYSICAL REVIEW LETTERS 125, 052002 (2020)

052002-4



calculated with the shower to the NLL result, as a function
of αs ln

ffiffiffiffiffiffi
y23

p
in the limit of αs → 0. The standard dipole

algorithms disagree with the NLL result, by up to 20%.
This is non-negligible, though smaller than the disagree-
ment in Fig. 1, because of the azimuthally averaged nature
of the

ffiffiffiffiffiffi
y23

p
observable. In contrast the PanGlobal and

PanLocal (β ¼ 0.5) showers agree with the NLL result to
within statistical uncertainties.
Figure 2(right) shows an overall summary of our tests.

The position of each point shows the result of Σshowerðαs →
0; αsL ¼ −0.5Þ=ΣNLL − 1 or ½Nsubjet

showerðαs → 0; αsL2 ¼ 5Þ=
Nsubjet

NLL − 1�= ffiffiffiffiffi
αs

p
. If it differs from 0, the point is shown as a

red square. In some cases (amber triangles) it agrees with 0,
though an additional fixed-order analysis in a fixed-
coupling toy shower [37,51] (Sec. 2) reveals issues affect-
ing NLL accuracy, all involving hitherto undiscovered
spurious super-leading logarithmic terms [77].
Green circles in Fig. 2 (right) indicate that the shower

and observable combination passes all of our NLL tests,
both at all orders and in fixed-order expansions. The four
shower algorithms designed to be NLL accurate pass all the
tests. These are the PanLocal shower (dipole and antenna
variants) with β ¼ 1

2
and the PanGlobal shower with

β ¼ 0 and β ¼ 1
2
.

To conclude, we have identified two routes towards NLL
parton shower accuracy. One involves a modification of the
evolution variable and dipole partition, while maintaining
dipole-local recoil; the other replaces dipole-local recoil
with event-wide recoil. While further work is needed
towards phenomenology, the results shown here represent
the first time that individual parton showers are demon-
strated to be able to reproduce NLL accuracy simulta-
neously for both nonglobal and a wide set of global
observables. It is our hope that these results, together with
our NLL criteria and validation framework, can provide the
solid foundations needed for future development of loga-
rithmically accurate showers.
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