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We investigate classic diffusion with the added feature that a diffusing particle is reset to its starting point
each time the particle reaches a specified threshold. In an infinite domain, this process is nonstationary and its
probability distribution exhibits rich features. In a finite domain, we define a nontrivial optimization inwhich
a cost is incurred whenever the particle is reset and a reward is obtained while the particle stays near the reset
point. We derive the condition to optimize the net gain in this system, namely, the reward minus the cost.
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Diffusion is a fundamental process underlying a wide
variety of stochastic phenomena that have broad applica-
tions to physics, chemistry, finance, and social sciences
[1–4]. A fruitful recent development is the notion of
resetting, in which a diffusing particle is reset to its starting
point at a specified rate [5–7]. Resetting alters the diffusive
motion in fundamental ways and has sparkedmuch research
on its rich consequences (see, e.g., Refs. [8–15]). Resetting
also has natural applications to search processes, where the
search begins anew if the target is not found within a certain
time [16–19]. For such diffusive searches, resetting leads to a
dramatic effect: An infinite search time to find a target
becomes finite, with the search time minimized at a critical
reset rate.
In this work, we investigate first-passage resetting in

which resetting occurs whenever a diffusing particle
reaches a threshold location (Fig. 1). Hence the time of
the reset event is determined by the state of the system itself
rather than being imposed externally [5–7]. First-passage
resetting typifies regenerative processes that are reset at
renewals [20], which have natural applications to reliability
theory [21]. This mechanism was first envisaged by Feller
[22] who proved existence and uniqueness theorems.
Similar ideas were pursued in Ref. [23], and they first
appear in the physics literature in Ref. [24]. Specifically,
Ref. [24] examines two Brownian particles biased toward
each other that reset to their initial positions upon encoun-
ter. This corresponds to a drift toward the origin in our
semi-infinite geometry of Fig. 1. This negative drift leads to
a stationary state, but the absence of drift leads to a variety
of new phenomena, as discussed below. Moreover, we
introduce a path decomposition that provides the spatial
probability distribution in a geometric way.
When the diffusing particle is confined to the finite

interval ½0; L�, we define an optimization problem in which

there is a cost for each resetting event and an increasing
reward as the particle approaches the resetting point x ¼ L.
This scenario is inspired by a power-management problem
[25,26], where the power delivered corresponds to the
coordinate x and a blackout corresponds to resetting.
A closely related optimization arises in finance [27]. In
both examples, one seeks to operate almost to full capacity
while avoiding saturation: In our optimization framework,
the goal is to maximize the net gain—the difference
between the reward and the cost.
Semi-infinite geometry.—We first treat diffusion on the

semi-infinite line with first-passage resetting (Fig. 1). The
particle starts at ðx; tÞ ¼ ð0; 0Þ and diffuses in the range
x < L. When L is reached, the particle is instantaneously
reset to the origin. Define FnðL; tÞ as the probability that
the particle resets for the nth time at time t. For n ¼ 1, this
quantity is the first-passage probability for a diffusing
particle to reach L [28],

F1ðL; tÞ ¼
Lffiffiffiffiffiffiffiffiffiffiffiffiffi

4πDt3
p e−L

2=4Dt:

0

2t1
time

L

t

FIG. 1. First-passage resetting on the semi-infinite line. When-
ever a diffusing particle, which starts at the origin, reaches L, it is
instantaneously reset to the origin. Successive first-passage times
are denoted by t1; t2;….
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For the particle to reset for the nth time at time t, it must
reset for the (n − 1)th time at time t0 < t, and reset one
more time at time t. Because the process is renewed at each
reset, FnðL; tÞ is given by the renewal equation,

FnðL; tÞ ¼
Z

t

0

dt0Fn−1ðL; t0ÞF1ðL; t − t0Þ; n > 1: ð1Þ

The convolution structure of Eq. (1) lends itself to a
Laplace transform analysis because the corresponding
equation in the Laplace domain is simply F̃nðL; sÞ ¼
F̃n−1ðL; sÞF̃1ðL; sÞ, from which F̃nðL; sÞ ¼ F̃1ðL; sÞn.
Using the Laplace transform of the first-passage prob-

ability F̃1ðL; sÞ ¼ e−yL, we thus obtain F̃nðL; sÞ ¼ e−nyL ,
where we introduce y ¼ x

ffiffiffiffiffiffiffiffiffi
s=D

p
and yL ¼ L

ffiffiffiffiffiffiffiffiffi
s=D

p
for

notational simplicity. Notice that F̃nðL; sÞ has the same
form as F̃1ðL; sÞ with L → nL. That is, the time for a
diffusing particle to reset n times is the same as the time for
a freely diffusing particle to first reach nL.
In contrast to fixed-rate resetting, the spatial probability

distribution in the semi-infinite geometry is nonstationary.
This distribution is formally determined by

Pðx; tÞ ¼ Gðx; L; tÞ þ
X
n≥1

Z
t

0

dt0 FnðL; t0ÞGðx; L; t − t0Þ;

ð2aÞ

with Gðx; L; tÞ ¼ ½e−x2=4Dt − e−ðx−2LÞ2=4Dt�= ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
, the

probability for a particle to be at ðx; tÞ when it starts at
the origin in the presence of an absorbing boundary at x ¼
L [28–30]. Equation (2a) states that for the particle to be at
ðx; tÞ, it either (i) must never hit L, in which case its
probability distribution is just Gðx; L; tÞ, or (ii), the particle
first hits L for the nth time at t0 < t, after which the particle
restarts at the origin and then propagates to x in the
remaining time t − t0 without hitting L again. The latter
set of trajectories must be summed over all n. An equivalent
way of writing Eq. (2a) is

Pðx; tÞ ¼ Gðx; L; tÞ þ
Z

t

0

dt0 F1ðL; t0ÞPðx; t − t0Þ: ð2bÞ

The first term accounts for the particle never reaching
x ¼ L, while the second term accounts for the particle
reaching x ¼ L at time t0, after which the process starts
anew from ðx; tÞ ¼ ð0; t0Þ for the remaining time t − t0.
Analogously to the Fokker-Planck equations, we refer to
Eqs. (2a) and (2b) as the forward and backward renewal
equations, respectively.
To solve for Pðx; tÞ we again treat the problem in the

Laplace domain. While we can find the solution from the
Laplace transform of Eq. (2a), the solution is simpler and
more direct from the Laplace transform of (2b):

P̃ðy; sÞ ¼ G̃ðy; yL; sÞ
1 − F̃1ðyL; sÞ

¼ 1ffiffiffiffiffiffiffiffiffi
4Ds

p ½e−jyj − e−jy−2yLj�
1 − e−yL

: ð3Þ

We now need to separately consider the cases 0 ≤ y ≤ yL
and y < 0. In the former case, we expand the denominator
in a Taylor series to give

P̃ðy; sÞ ¼ 1ffiffiffiffiffiffiffiffiffi
4Ds

p ½e−y − e−ð2yL−yÞ�
X
n≥0

e−nyL

¼ 1ffiffiffiffiffiffiffiffiffi
4Ds

p
X
n≥0

½e−ðyþnyLÞ − e−½ðnþ2ÞyL−y��; ð4aÞ

from which

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p
X
n≥0

½e−ðxþnLÞ2=4Dt − e−½x−ðnþ2ÞL�2=4Dt�:

ð4bÞ

The long-time limit of Pðx; tÞ is particularly simple. By
expanding the Laplace transform for small s and then
inverting this transform, we find

Pðx; tÞ ≃ 1ffiffiffiffiffiffiffiffi
πDt

p L − x
L

0 ≤ x ≤ L:

This linear form arises from the balance of the diffusive
flux exiting at x ¼ L that is reinjected at x ¼ 0.
For y < 0, P̃ðy; sÞ in Eq. (3) is factorizable:

P̃ðy;sÞ¼ 1ffiffiffiffiffiffiffiffiffi
4Ds

p
�
ey−ey−2yL

1−e−yL

�
¼ 1ffiffiffiffiffiffiffiffiffi

4Ds
p ½eyþeðy−yLÞ�; ð5aÞ

and this latter form can be readily inverted to give

Pðx; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p ½e−x2=4Dt þ e−ðx−LÞ2=4Dt� x < 0: ð5bÞ

Strikingly, this closed form represents the superposition of
free diffusion paths to ðx; tÞ starting from (0,0) and from
ðL; 0Þ. This property may be derived by decomposing
trajectories with resetting into a series of first-passage
segments between each reset and then reflecting and
translating them to obtain either a free diffusion path that
starts at ðL; 0Þ or at (0,0) and propagates to ðx; tÞ as
indicated in Fig. 2. We emphasize that this decomposition
applies for any symmetric stochastic process.
A basic characteristic of regenerative processes is the

number of reset events up to time t. The probability Qn for
n reset events is given by

Qn ¼ Probð≥n resetsÞ − Probð≥nþ 1 resetsÞ

¼
Z

t

0

dt0½FnðL; t0Þ − Fnþ1ðL; t0Þ�:
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From our previous result that FnðL; tÞ ¼ F1ðnL; tÞ, we
immediately have

Qn ¼ erf

�ðnþ 1ÞLffiffiffiffiffiffiffiffi
4Dt

p
�
− erf

�
nLffiffiffiffiffiffiffiffi
4Dt

p
�
; ð6Þ

where erf is the Gauss error function.
We can compute N ðtÞ≡ hni, the average number of

reset events from Eq. (6), but it is quicker to express N ðtÞ
in terms of a backward renewal equation:

N ðtÞ ¼
Z

t

0

dt0 F1ðL; t0Þ½1þN ðt − t0Þ�: ð7Þ

Equation (7) accounts for the particle first hitting L at any
time t0 < t, after which the process is renewed over the time
range t − t0, so there will be on average 1þN ðt − t0Þ
resets. Taking the Laplace transform of Eq. (7) then leads to

Ñ ðsÞ ¼ F̃1ðL; sÞ
s½1 − F̃1ðL; sÞ�

¼ e−yL

sð1 − e−yLÞ ; ð8Þ

from which we extract the long-time behavior of the
average number of reset events by taking the s → 0 limit.
We thus find N ðtÞ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt=πL2

p
.

Optimization in the finite interval.—Let us now view the
coordinate x as the operating point of a mechanical system
or a power grid with x ∈ ½0; L�, and a control mechanism
that acts upon x in the form of a drift. It is desirable that the
system operates close to the maximum operating point;
that is, xðtÞ near L. We therefore assign a reward that is

proportional to xðtÞ=L. On the other hand, when x reaches
L the system breaks down. Each breakdown incurs a cost
C, after which the system is reset to the origin. The goal is
to determine the optimal operation of this system, for which
the objective function

F ¼ lim
T→∞

1

T

�
1

L

Z
T

0

xðtÞdt − CN ðTÞ
�

ð9Þ

is maximized, with N ðTÞ the number of breakdowns
within a time T.
As a simple model, we posit that the coordinate x

changes in time according to diffusion, due to demand
fluctuations, with superimposed drift. From a practical
viewpoint, the drift should drive the system away from the
breakdown point; that is, the control mechanism forestalls
breakdowns. However, optimization arises for either sense
of the drift. Mathematically, we need to solve the proba-
bility distribution of the particle which obeys the con-
vection diffusion equation,

∂tcþ v∂xc ¼ D∂xxcþ δðxÞð−D∂xcþ vcÞjx¼L; ð10Þ

subject to the initial and boundary conditions

� ðD∂xc − vcÞjx¼0 ¼ δðtÞ;
cðL; tÞ ¼ cðx; 0Þ ¼ 0:

Here, c≡ cðx; tÞ is the probability density, the subscripts
denote partial differentiation, D is the diffusion coefficient,
and v is the drift velocity. The delta function term in
Eq. (10) corresponds to the reinjection of the outgoing flux
at x ¼ L to x ¼ 0, and the initial condition corresponds to
starting the system at ðx; tÞ ¼ ð0; 0Þ.
This problem can be readily solved in the Laplace

domain. As a preliminary, we first need to solve the simpler
subproblem with no flux reinjection so that the delta-
function term in Eq. (10) is absent. In this case, the
concentration is [31]

c̃0ðx; sÞ ¼
2evx=2D sinh ½wðL − xÞ�

M
; ð11aÞ

where the subscript 0 denotes the concentration without
flux reinjection, Pe≡ vL=2D is the Péclet number, w ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 þ 4Ds

p
=2D, and M ¼ 2Dw coshðLwÞ þ v sinhðLwÞ.

From c̃0, the Laplace transform of the first-passage prob-
ability to x ¼ L is

F̃1ðL; sÞ ¼ ð−D∂xc̃0 þ vc̃0Þjx¼L ¼ 2DwePe

M
: ð11bÞ

With reinjection of the outgoing flux, the concentration
obeys the renewal equations (2). In the Laplace domain and
using c̃0 above, we find

x

L

0

time
(a)

x

L

0

time
(b)

x

L

0

time
(c)

x

L

0

time
(d)

FIG. 2. Schematic of diffusion with first-passage resetting.
Shown are paths from (0,0) to ðx; tÞ with (a) an odd number or
(b) an even number of reset events. We transform either the odd-
numbered or the even-numbered pieces of the original path
through the reflection xðtÞ → L − xðtÞ to yield free diffusion
from either (c) ðL; 0Þ to ðx; tÞ or (d) (0,0) to ðx; tÞ. Summing over
all numbers of reset events gives Eq. (5b).
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c̃ðx; sÞ ¼ c̃0ðx; sÞ
1 − F̃1ðL; sÞ

¼ 2evx=2D sinh½wðL − xÞ�
M − 2DwePe

; ð12Þ

where we substitute in Eqs. (11) to obtain the final result.
On a finite interval, diffusion with first-passage resetting

is ergodic and admits a steady state [32–34]. In the s → 0
limit, the coefficient of the term proportional to ð1=sÞ in
c̃ðx; sÞ gives the steady-state concentration in the time
domain, which is

cðxÞ ≃ 1

L
×

1 − e−2PeðL−xÞ=L

1 − Pe−1e−Pe sinhðPeÞ ; ð13Þ

from which the normalized first moment is

hxi
L

¼ 1

L

Z
L

0

x cðxÞdx ¼ ð2Pe2 − 2Peþ 1Þe2Pe − 1

2Pe½ð2Pe − 1Þe2Pe þ 1� : ð14Þ

The average number of reset events N satisfies
the backward renewal equation (7) and using F̃1 from
Eq. (11b) we find

Ñ ðsÞ ¼ 2DwePe

s½M − 2DwePe� : ð15aÞ

We now extract the long-time behavior for the average
number of times that x ¼ L is reached by taking the limit
s → 0 of Ñ ðsÞ to give

N ðTÞ ≃ 4Pe2

2Pe − 1þ e−2Pe
T

L2=D
: ð15bÞ

Substituting these expressions for hxi=L and N into
Eq. (9) immediately gives the objective function; repre-
sentative plots are shown in Fig. 3. The salient feature is
that there is an optimal operating Péclet number for each
cost value. When the cost per breakdown is small, it is
advantageous to run the system at positive Péclet number.

Although there are many breakdowns, they are cheap, and
there is a greater reward in pushing the system to the limit.
Conversely, when the breakdown cost is high, the optimal
operating point is at a negative Péclet number. Although
there is little gain in operating the system at such a low
level, the breakdown cost is so high that low-level operation
is optimal.
When a mechanical system breaks down, there is

downtime when repairs are effected before the system
can be restarted. Such a delay, akin to the refractory period
considered in Refs. [10,12,35,36], can be incorporated into
our modeling by including a random delay after each
resetting event. Thus, when the particle reaches x ¼ L and
is returned to x ¼ 0, it waits there a random time τ that is
drawn from the exponential distribution σ−1e−τ=σ before
moving again. Our formalism developed for instantaneous
resetting can be naturally extended to resetting with
delay—which might also be viewed as a so-called “sticky”
Brownian motion [37–39] combined with resetting. The
details are cumbersome, however, and we merely quote the
main results. Upon including delay, the calculational steps
that led to Eq. (14) now give [31]

hxi
L

¼ ½ð2Pe − 2ÞPeþ 1�e2Pe − 1

2½Peð4τ̄Pe2 þ 2Pe − 1Þe2Pe þ Pe� ; ð16Þ

where τ̄ ¼ Dσ=L2 is a dimensionless measure of the delay
time. Similarly, following the calculation that led to
Eq. (15b), the average number of breakdowns is

N ¼ 4Pe2

2Pe − 1þ 4τ̄Pe2 þ e−2Pe
T

L2=D
: ð17Þ

This leads to an objective function whose qualitative
features are similar to the no-delay case. The primary
difference is that the optimal Péclet number and the
corresponding optimal objective function F both decrease
as the delay time is increased. Indeed, delay reduces the
number of breakdowns but also induces the coordinate to
remain closer to the origin. In the limit where the delay is
extremely long, the optimal Péclet number will be small
and will almost not depend on the cost per breakdown, as
the particle almost never hits the resetting boundary.
In summary, triggering the reset of a diffusing particle by a

first-passage event leads to rich features. On the infinite line,
the probability distribution is exactly calculable and can be
understood in terms of a subtle path decomposition. In a
finite domain ½0; L�, there exists an optimal bias velocity that
maintains the system at maximum performance—close to
the peak operating point of x ¼ L while minimizing the
number of breakdowns.
The formalism developed here can be extended to

systems with multiple degrees of freedom, such as a power
grid, where the breakdown in one coordinate induces a
breakdown in another coordinate. Another promising

FIG. 3. The objective function of Eq. (9) versus Péclet number
Pe for different normalized cost values C0 ≡ C=ðL2=DÞ. Indi-
cated on each curve is the optimal operating point.
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direction is to incorporate the possibility of partial versus
complete repair [40]. After partial repair, the operating
range of the system is reduced, so that the next breakdown
is more likely to occur sooner. On the other hand, there will
be a smaller penalty associated with partial repair. This
perspective may allow one to optimize both the frequency
and magnitude of repair costs.
More generally, first-passage resetting may lead to

intriguing statistical features in problems in control theory
and management science (where fluctuations of inventory
or cash fund levels are typically modeled by random walks
or Brownian motion, and there generally exists a maximal
capacity that one seeks to use optimally [41,42]) or in
biology (where allele frequencies in population genetics
models evolve according to diffusion, with “killing”when a
frequency reaches a limit level [43,44]).
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