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We use quantum estimation theory to derive a thermodynamic uncertainty relation in Markovian open
quantum systems, which bounds the fluctuation of continuous measurements. The derived quantum
thermodynamic uncertainty relation holds for arbitrary continuous measurements satisfying a scaling
condition. We derive two relations; the first relation bounds the fluctuation by the dynamical activity and
the second one does so by the entropy production. We apply our bounds to a two-level atom driven by a
laser field and a three-level quantum thermal machine with jump and diffusion measurements. Our result
shows that there exists a universal bound upon the fluctuations, regardless of continuous measurements.
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Introduction.—Uncertainty relations distinguish the pos-
sible from the impossible and have played fundamental
roles in physics. Recently, thermodynamic uncertainty
relations (TURs) have been found in stochastic thermody-
namics, showing that the fluctuation of time-integrated
observables is lower bounded by thermodynamic costs,
such as entropy production and dynamical activity [1–23]
(see Ref. [24] for a review). TURs predict the fundamental
limit of biomolecular processes and thermal machines, and
they have been applied to infer the entropy production
[25–27].
In contrast to classical systems, studies of TURs in the

quantum regime are in very early stages. One of the
distinguishing properties of quantum systems is how they
behave under measurement. In stochastic thermodynamics,
it is naturally assumed that we can measure the stochastic
trajectories of the system. In quantum systems, output is
obtained through measurements, but the measurements
themselves alter the system state. Moreover, in addition
to the freedom of how we compute the current in stochastic
thermodynamics, we have an extra degree of freedom based
on how we measure the quantum systems. Although TURs
have been recently studied in quantum systems [28–32],
these works have not considered the measurement effects
explicitly, or specified a type of measurement in advance.
In this Letter, we derive a quantum thermodynamic

uncertainty relation (QTUR) for Markovian open quantum
dynamics using quantum estimation theory [33–35]. In
Ref. [18], we have derived a TUR for Langevin dynamics
via the Cramér-Rao inequality. Extending this line of
reasoning to quantum dynamics, we derive a QTUR for
continuous measurements with the quantum Cramér-Rao
inequality. The quantum Cramér-Rao inequality holds for
arbitrary measurements, while the classical one is satisfied
for specific measurements, indicating that the quantum
version is more general. By virtue of this generality, the

obtained QTUR holds for arbitrary continuous measure-
ments satisfying a scaling condition [cf. Eq. (5)]. Our
QTUR has two variants; the first relation is bounded by the
dynamical activity, and the second by the entropy produc-
tion. We demonstrate the QTUR with a two-level atom and
a quantum thermal machine under jump and diffusion
measurements.
Methods.—The TURs in classical stochastic thermody-

namics consider the fluctuation of currents, which are time
integrals of the stochastic trajectories. Analogously, we
wish to bound the fluctuation of the time-integrals of
continuous measurements in quantum dynamics.
In continuous measurements, we consider a principal

system S and an environment E. Consider a Kraus operator
Vm acting on the principal system, which satisfiesP

m V†
mVm ¼ I (I denotes the identity operator). We can

describe the time evolution induced by the Kraus operator
Vm on the principal system by a unitary operator U acting
upon the composite system Sþ E. Let jeki be an ortho-
normal basis for E. We can define the unitary operator U
such that [36]

jψ 0i ¼ UjψSi ⊗ je0i ¼
X
m

VmjψSi ⊗ jemi; ð1Þ

where je0i is some standard state of the environment and
jψSi is the initial state of the principal system. When
applying the measurement jemi to the environment, the
principal system becomes jψ 0

Si ∝ VmjψSi. Therefore, the
operator Vm is associated with the output m and constitutes
a measurement operator. We sequentially repeat this pro-
cedure to describe the continuous measurement [35]. We
consider a continuous measurement during a time interval
½0; T�. We discretize time by dividing the interval ½0; T� into
N equipartitioned intervals, where the time resolution is
Δt≡ T=N. At each time interval, we consider Eq. (1). Then
the state of the composite system at time t ¼ T is [35]
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jψðTÞi ¼
X
m

VmN−1
…Vm0

jψSi ⊗ jemN−1
;…; em0

i; ð2Þ

wherem≡ ½m0;…; mN−1�. In Eq. (2), we assume that Vm is
time independent, leading to Markovian dynamics. We
hereafter consider the limit of N → ∞, where m becomes a
record of the continuous measurement. For instance, in the
case of a jump measurement, mi corresponds to either
“detection” or “no detection” of a jump within Δt.
Depending upon m, the state of the principal system
jψSðTÞi ∝ VmN−1

…Vm0
jψSi is determined and is referred

to as a quantum trajectory. For example, in Fig. 1, we show
quantum trajectories and their corresponding measurement
records for the jump [Fig. 1(a)] and diffusion [Fig. 1(b)]
measurements.
The time evolution of the density operator ρ is

_ρ ¼ ½Pm VmρV
†
m − ρ�=dt, which obeys the Lindblad equa-

tion:

_ρ ¼ LðρÞ≡ −i½H; ρ� þ
X
c

Dðρ; LcÞ; ð3Þ

where L is the Lindblad operator, ½·; ·� is the commutator,H
is a Hamiltonian, Dðρ; LÞ≡ LρL† − fL†L; ρg=2 is the
dissipator with f·; ·g being the anticommutator, and Lc is
a jump operator. Although the Kraus operator Vm depends
on measurements, the Lindblad equation does not depend
on the continuous measurements performed. In Eq. (3), the
first and the second terms are referred to as coherent
dynamics and dissipation, respectively. We assume that the
HamiltonianH and the jump operators Lc are parametrized
by θ ∈ R; we express these expressions by Hθ and Lc;θ,
respectively. We define Lθ, which is the Lindblad operator
consisting ofHθ and Lc;θ. We consider the estimation of the
parameter θ from the continuous measurement. Let Θ
be an observable and Eθ½Θ� be the expectation of Θ
with a parameter θ. According to the quantum Cramér-Rao
inequality, the following inequality holds [37,38]:
Varθ½Θ�=ð∂θEθ½Θ�Þ2 ≥ 1=IQðθÞ, where Varθ½Θ� is
the variance of Θ and IQðθÞ is the quantum Fisher
information (see Refs. [33,34] for its review). This

expression is a generalization of the conventional quantum
Cramér-Rao inequality [38]. Let ICðθ;MmÞ be the
classical Fisher information obtained through positive-
operator valued measure elements Mm; then IQðθÞ ¼
maxMm

ICðθ;MmÞ, indicating that the quantum Cramér-
Rao inequality is satisfied by any quantum measure-
ments [33,34].
Recently, Ref. [35] obtained the quantum Fisher infor-

mation for continuous measurements. For T → ∞,
Ref. [35] showed that IQðθÞ ¼ 4T∂θ1∂θ2 λ̃θ1;θ2 jθ1¼θ2¼θ,
where λ̃θ1;θ2 is a dominant eigenvalue for T → ∞ of a
modified Lindblad operator L̃θ1;θ2ðρÞ≡ −iHθ1ρþ iρHθ2 þP

c Lc;θ1ρL
†
c;θ2

− ð1=2ÞPc ½L†
c;θ1

Lc;θ1ρþ ρL†
c;θ2

Lc;θ2 � (see
Refs. [35,39] for derivation). For θ1 → θ and θ2 → θ,
L̃θ1;θ2 → Lθ and λ̃θ1;θ2 → 0.
QTUR of dynamical activity.—We now derive a QTUR

using the quantum Cramér-Rao inequality. We hereafter
assume that the density operator of the system is in a single
steady state ρss and only consider the limit of T → ∞. In
Ref. [18], a TUR was derived via the classical Cramér-Rao
inequality by considering a virtual perturbation [16], which
affects only the timescale of the dynamics while keeping
the steady-state distribution unchanged. Analogously, we
consider the following modified Hamiltonian and jump
operator in Eq. (3):

Hθ ¼ ð1þ θÞH; Lc;θ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ θ

p
Lc: ð4Þ

Since the Lindblad operator corresponding to Eq. (4) is
given by Lθ ¼ ð1þ θÞLθ¼0, the dynamics of Lθ are
identical to the unmodified dynamics (i.e., the dynamics
of θ ¼ 0), except for the time scale. Let us consider a time-
integrated observable ΘðmÞ satisfying

Eθ½ΘðmÞ� ¼ hðθÞEθ¼0½ΘðmÞ�; ð5Þ

where hðθÞ is a scaling function independent of m
[hð0Þ ¼ 1 should be satisfied]. Typically, it is given by
hðθÞ ¼ 1þ θ. ΘðmÞ may be an arbitrary function of m as
long as Eq. (5) is satisfied. For instance, suppose an
estimator counts the number of photons emitted during
½0; T�; because the system is assumed to be in a steady state,
the average number of photons emitted for Lθ is 1þ θ-
times larger than that of Lθ¼0, and hence this observable
satisfies Eq. (5) with hðθÞ ¼ 1þ θ. Combining the quan-
tum Cramér-Rao inequality and Eq. (5), we find
Var½Θ�=E½Θ�2 ≥ h0ð0Þ2=IQð0Þ. IQðθÞ can be calculated
by differentiation of a dominant eigenvalue of L̃θ1;θ2 . Using
eigenvalue differentiation [35,40], we obtain

Var½Θ�
E½Θ�2 ≥

h0ð0Þ2
TðϒþΨÞ : ð6Þ

Here,
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FIG. 1. Quantum trajectories and measurements of (a) jump
measurement (photon counting) and (b) diffusion measurement
(homodyne detection) in a two-level atom. Upper panels are
quantum trajectories of ρee ≡ hϵejρjϵei and lower panels are
measurement outputs.
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ϒ≡X
c

Tr½Lcρ
ssL†

c�; ð7Þ

Ψ≡ −4Tr½K1∘Lþ
P∘K2ðρssÞ þK2∘Lþ

P∘K1ðρssÞ�;
ð8Þ

where K1ðρÞ≡ −iHρþ ð1=2ÞPcðLcρL
†
c − L†

cLcρÞ and
K2ðρÞ≡ iρH þ ð1=2ÞPc ðLcρL

†
c − ρL†

cLcÞ, ∘ is function
composition, and Lþ

P is a subspace of Lþ that is comple-
mentary to the steady-state subspace, with Lþ being the
Moore-Penrose pseudoinverse of L (see Ref. [41] for an
explicit expression). Equation (6) is the first result of
this Letter, which holds for arbitrary continuous measure-
ments satisfying Eq. (5) in Markovian open quantum
systems.
For simplicity, let us consider the following case:

Lji ¼ ffiffiffiffiffi
ηji

p jϵjihϵij; ρssij ¼ 0 ði ≠ jÞ; ð9Þ

where jϵii is the eigenbasis of the Hamiltonian H, ηji is a
transition rate from jϵii to jϵji (we redefined the subscript
of the jump operator from Lc to Lji), and ρssij ≡ hϵijρssjϵji.
The off-diagonal elements of the steady-state density
matrix in the energy eigenbasis are zero. These assump-
tions are often satisfied for quantum thermal machines [42].
We obtain ϒ ¼ P

i≠j ρ
ss
iiηji, corresponding to the dynami-

cal activity in a classical Markov process, implying that ϒ
is a quantum analogue of the dynamical activity [41].
Moreover, we can obtain a simpler lower bound by scaling
the jump operator alone [41]. In this case, Ψ in Eq. (6)
becomes 0, which re-derives classical TUR. This shows
thatΨ quantifies the degree of the coherent dynamics in the
Lindblad equation, which is also shown in a two-level
atom. Therefore, Eq. (6) is a quantum generalization of a
TUR [10,17], which is bounded by dynamical activity. In
classical Markov processes, a TUR bounded by the
dynamical activity was derived only for discrete space
systems because the dynamical activity is not well defined
for continuous space. Contrastingly, Eq. (6) holds for both
discrete jump and continuous diffusion cases. Recently,
Ref. [30] proved a similar bound for quantum jump
processes. The bound of Ref. [30] was derived for given
quantum trajectories. Therefore, their bound is obtained for
a specified continuous measurement. Reference [32]
derived a TUR in a quantum nonequilibrium steady state
using the classical Cramér–Rao inequality; since their TUR
bounds the fluctuation of instantaneous currents (i.e.,
current-measurement operators), measurement effects are
not explicitly incorporated.
As an example of QTUR, we consider a two-level atom

driven by a classical laser field. Let jϵgi and jϵei denote the
ground and excited states, respectively. A Hamiltonian is
given by H¼ΔjϵeihϵejþðΩ=2ÞðjϵeihϵgjþjϵgihϵejÞ, where
Δ is a detuning between the laser-field and the atomic-
transition frequencies, and Ω is the Rabi-oscillation

frequency. A jump operator is L ¼ ffiffiffi
κ

p jϵgihϵej, where κ
is the decay rate, and it induces a jump from jϵei to jϵgi. We
obtain the dynamical activity ϒ¼κρssee¼κΩ2=ð4Δ2þκ2þ
2Ω2Þ and the coherent-dynamics contribution

Ψ ¼ 8Ω4½4Δ4 þ Δ2ðκ2 þ 8Ω2Þ þ ðκ2 þ 2Ω2Þ2�
κð4Δ2 þ κ2 þ 2Ω2Þ3 : ð10Þ

We first consider a jump measurement (photon detection).
The quantum trajectory is given by the stochastic
Schrödinger equation (where the corresponding Vm is
shown in Ref. [41]):

dρ ¼
�
−i½H; ρ� − 1

2
fL†L; ρg þ ρTr½LρL†�

�
dt

þ
�

LρL†

Tr½LρL†� − ρ

�
dN ; ð11Þ

where dN is a noise increment and dN ¼ 1when a photon
is detected between t and tþ dt and dN ¼ 0
otherwise. m ¼ ½m0;…; mN−1� in Eq. (2) corresponds to
½ΔN 0;…;ΔN N−1�. The average of this quantity reads
E½dN � ¼ Tr½LρssL†�dt. We consider an observable
ΘN ≡ R

T
0 dN , which counts the number of photons emitted

within the interval ½0; T�. Since Eθ½dN � ¼ ð1þ
θÞEθ¼0½dN � and thus Eθ½ΘN � ¼ ð1þ θÞEθ¼0½ΘN �, ΘN
satisfies the QTUR of Eq. (6) with h0ð0Þ ¼ 1.
We next consider a diffusion measurement (homodyne

detection). A quantum trajectory of the diffusion measure-
ment is given by a quantum-state diffusion (the corre-
sponding Vm is shown in Ref. [41]):

dρ ¼
�
−i½H; ρ� − 1

2
fL†L; ρg þ LρL†

�
dt

þ ðLρþ ρL† − Tr½Lρþ ρL†�ρÞdW; ð12Þ

where W is the standard Wiener process. The measurement
result is given by dY ¼ Tr½Lρþ ρL†�dtþ dW [43]. m ¼
½m0;…; mN−1� in Eq. (2) corresponds to ½ΔY0;…;ΔYN−1�.
We consider an observable ΘY ≡ R

T
0 dY. Since Eθ½ΘY � ¼R

T
0 Tr½Lθρ

ssþ ρssL†
θ�dt¼

ffiffiffiffiffiffiffiffiffiffi
1þ θ

p
Eθ¼0½ΘY� [hðθÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ θ

p
in Eq. (5)], ΘY satisfies the QTUR of Eq. (6) with
h0ð0Þ ¼ 1=2. Therefore, the lower bound of the diffusion
measurement is 1=4 times smaller than that of the jump
measurement.
We verify the QTUR of Eq. (6) for the two-level atom

with a computer simulation [44,45]. We first plot IQð0Þ ¼
Tðϒþ ΨÞ (solid line), Tϒ (dashed line), and TΨ (dotted
line) as a function of κ in Fig. 2(a) [parameters are shown in
the caption of Fig. 2(a)]. From Fig. 2(a), when κ becomes
larger (i.e., more frequent jumps), the dynamical activity ϒ
is dominant in the quantum Fisher information IQð0Þ. For
κ → 0, ϒ → 0 and the coherent dynamics contribution Ψ
becomes the major portion of IQð0Þ. We numerically check
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the QTUR for the jump measurement by randomly gen-
erating κ, Ω, and Δ [the ranges of the parameters are shown
in the caption of Fig. 2(b)] and calculate Var½ΘN �=E½ΘN �2.
In Fig. 2(b), the circles denote Var½ΘN �=E½ΘN �2 as a
function of TðΥþ ΨÞ and the lower bound of Eq. (6) is
shown by the dashed line. We confirm that all realizations
satisfy the QTUR, which verifies Eq. (6). In a classical
case [10,17], the lower bound arises from the dynamical
activity alone (i.e., Tϒ). Thus, we also check whether
Var½ΘN �=E½ΘN �2 can be bounded only by Tϒ. In Fig. 2(b),
the triangles denote Var½ΘN �=E½ΘN �2 as a function of Tϒ,
where the dashed line describes 1=ðTϒÞ. Clearly, some
realizations are below 1=ðTϒÞ, indicating that the lower
bound of the QTUR is below the classical bound [10,17].
Similar enhancement of precision has been reported for
quantum jump processes [30], and for classical systems
with periodic driving [13] or magnetic fields [11]. We also
performed a computer simulation for the diffusion meas-
urement and verified the bound (see Ref. [41]).
QTUR of entropy production.—Employing a scaling

different from Eq. (4), we can bound Var½Θ�=E½Θ�2 by
the entropy production. Again, we assume that the system
satisfies the conditions of Eq. (9). Moreover, we assume
that whenever ηji > 0, ηij > 0 should be satisfied. Inspired
by Ref. [19], we consider the following modified process
instead of Eq. (4):

Lji;θ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηji

�
1þ θ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffi
ηijρ

ss
jj

ηjiρ
ss
ii

s ��vuut jϵjihϵij ði ≠ jÞ: ð13Þ

With Eq. (13), the steady-state density remains unchanged.
Repeating a similar calculation to the dynamical-activity
case (see Ref. [41] for details), an observable Θ satisfying
Eq. (5) obeys

Var½Θ�
E½Θ�2 ≥

2h0ð0Þ2
TΣ

; ð14Þ

where Σ≡P
i≠j ρ

ss
iiηji ln ½ρssiiηji=ðρssjjηijÞ�. Equation (14) is

the second result of this Letter. The expression of Σ is
identical to the entropy production rate in stochastic
thermodynamics [46]; therefore, our approach rederives
the classical TUR [1,3] but its applicability is broader than
that of a classical counterpart, as detailed below.
As an example, we consider a quantum thermal machine.

Such machines are the basis for quantum clocks and thus it
is important to consider their precision [28,42].
Specifically, we employ a thermal machine with three
levels jϵAi, jϵBi, and jϵgi powered by three heat reservoirs
at different inverse temperatures βr (r ¼ 1, 2, 3) [42,47].
Each transition is coupled with each of the heat reservoirs
[Fig. 3(a)]. The Hamiltonian is H ¼ ω3jϵBihϵBjþ
ω1jϵAihϵAj, where ω1, ω2, and ω3 ¼ ω1 þ ω2 are energy
gaps between jϵAi ↔ jϵgi, jϵBi ↔ jϵAi, and jϵBi ↔ jϵgi,
respectively. Let _Qr be the heat current from the rth
reservoir with temperature βr. We assume that the dynam-
ics of the density operator ρ obey the Lindblad equation
_ρ ¼ −i½H; ρ� þP

i≠jDðρ; LjiÞ, where Lji is defined in
Eq. (9) with ηgA ¼ γðnth1 þ 1Þ, ηAg ¼ γnth1 , ηAB ¼
γðnth2 þ 1Þ, ηBA ¼ γnth2 , ηgB ¼ γðnth3 þ 1Þ, and ηBg ¼ γnth3
[nthr ≡ ðeβrωr − 1Þ−1 and γ is the decay rate]. The entropy
production rate is Φ ¼ −

P
3
r¼1 βi _Qr [48,49], and satisfies

Φ ¼ Σ [41]. Therefore, the classical entropy production
rate Σ corresponds to the entropy production rate in the
quantum thermal machine Φ.
We first consider a standard jump measurement. The

quantum trajectory is given by a stochastic Schrödinger
equation:

dρ ¼ −i½H; ρ�dtþ
X
i≠j

�
ρTr½LjiρL

†
ji� −

fL†
jiLji; ρg
2

�
dt

þ
X
i≠j

�
LjiρL

†
ji

Tr½LjiρL
†
ji�

− ρ

�
dN ji; ð15Þ

where dN ji is a noise increment as defined in Eq. (11).
We consider the observableΘC ≡P

i≠j Rji

R
T
0 dN ji, where

Rji ¼ −Rij and Rji ∈ R. ΘC satisfies the scaling condition
of Eq. (5) and thus the QTUR of Eq. (14). Because the
dynamics of Eq. (15) are jumps between energy eigenstates
that are equivalent to classical dynamics, ΘC trivially
satisfies Eq. (14).
We next consider a transformed jump measurement

[50]. The Lindblad equation is invariant under
the transformation L0

ji ¼ Lji þ ζjiI and H0 ¼ H−
ði=2Þ Σ

i≠j
½ζ�jiLji − ζjiL

†
ji�, where ζji ∈ C is a parameter.

ζji ¼ 0 for all i and j recovers the standard jump meas-
urement. Thus, we can consider a transformed stochastic
Schrödinger equation, where H and Lji are replaced with
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FIG. 2. Quantum Fisher information and the results of com-
puter simulations of jump measurement. (a) The quantum Fisher
information IQð0Þ ¼ Tðϒþ ΨÞ (solid line), Tϒ (dashed line),
and TΨ (dotted line) as a function of κ, where T ¼ 1, Ω ¼ 1, and
Δ ¼ 1. (b) Var½ΘN �=E½ΘN �2 as a function of TðϒþΨÞ (circles)
and Tϒ (triangles) for the jump measurement, where
Δ ∈ ½0.1; 10.0�, Ω ∈ ½0.1; 10.0�, κ ∈ ½0.1; 10.0�, and T ¼ 1000.
The dashed line corresponds to 1=½TðϒþΨÞ� for the circles and
1=½Tϒ� for the triangles.
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H0 and L0
ji, respectively, in Eq. (15), and we define dN

0
ji as

a noise increment in the transformed equation. Quantum
trajectories are no longer simple jump processes between
energy eigenstates [41]. We consider an observable
Θ0

C ≡P
i≠j R

0
ji

R
T
0 dN 0

ji, where R0
ji ¼ −R0

ij, for the trans-
formed equation. When jζjij ¼ jζijj for all i and j, Θ0

C
satisfies the scaling condition of Eq. (5) and the QTUR of
Eq. (14) holds [41].
We verify the QTUR of Eq. (14) for the transformed

jump measurement (i.e., ζji ≠ 0 and jζijj ¼ jζjij) via a
computer simulation by randomly generating βr, ωr, R0

ji,
and ζji [parameters are shown in the caption of Fig. 3(b)]
and calculating Var½Θ0

C�=E½Θ0
C�2. In Fig. 3(b), the circles

denote Var½Θ0
C�=E½Θ0

C�2 as a function of the entropy
production TΣ and the lower bound of Eq. (14) is shown
by a dashed line. We confirm that all realizations satisfy the
QTUR, verifying Eq. (14). Although the bound of Eq. (14)
itself is identical to the classical TUR [1,3], our QTUR
provides the lower bound for arbitrary measurements with
the scaling condition. No matter how we measure the
thermal machine, an observable satisfying the scaling
relation [Eq. (5)] should obey the QTUR of Eq. (14),
which cannot be deduced from classical TURs. We also
note observables not satisfying the scaling condition of
Eq. (5). As demonstrated in the example, although the
scaling condition is satisfied for typical measurement
schemes, such as jump and diffusion measurements, this
is not the case for general continuous measurements. For
such cases, inequalities of Eqs. (6) and (14) hold with E½Θ�
replaced by ∂θEθ½Θ�.
Conclusion.—In this Letter, we have derived the QTUR

from the quantumCramér-Rao inequality. The QTUR holds
for arbitrary continuous measurements satisfying the scal-
ing condition. We expect the present study to form a basis
for obtaining uncertainty relations in the quantum regime.
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