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An open question in quantum optics is how to manipulate and control complex quantum states in an
experimentally feasible way. Here we present concepts for transformations of high-dimensional multi-
photonic quantum systems. The proposals rely on two new ideas: (i) a novel high-dimensional quantum
nondemolition measurement, (ii) the encoding and decoding of the entire quantum transformation in an
ancillary state for sharing the necessary quantum information between the involved parties. Many solutions
can readily be performed in laboratories around the world and thereby we identify important pathways for
experimental research in the near future. The concepts have been found using the computer algorithm
MELVIN for designing computer-inspired quantum experiments. As opposed to the field of machine
learning, here the human learns new scientific concepts by interpreting and analyzing the results presented
by the machine. This demonstrates that computer algorithms can inspire new ideas in science, which has a
widely unexplored potential that goes far beyond experimental quantum information science.
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One collective goal of quantum optics research is to find
ways for controlling complex quantum systems, both for
investigating fundamental questions of quantum mechanics
and for potential applications in quantum technology [1,2].
The complexity of a quantum system increases with the

number of parts involved and the number of dimensions of
its individual parts. For single photonic quantum systems, it
has been well known for 25 years how to perform arbitrary
unitary transformations [3], which has since become a
foundation for integrated photonics [4–7]. Also in other
degrees of freedom of photons, single qudit quantum gates
have been well understood—for example, using discretized
time steps [8] or spatial modes of photons [9–12] and high-
dimensional multi-degree-of-freedom operations on single
photons [13].
Multiphoton operations are more intricate, as photons do

not interact with each other. To overcome this difficulty and
perform an effective interaction between two photons,
ancillary states are used to herald probabilistic transforma-
tions such as controlled-NOT (CNOT) gates [14–16]. The
quality of these transformations has immensely increased,
enabling on-chip demonstrations of arbitrary two-dimen-
sional two-photon gates, as well as theoretical concepts for
arbitrary photonic qubit transformations [17]. Summing up,
the special cases of multiphotonic qubit transformations
and single-photonic arbitrary high-dimensional transforma-
tions are well understood. However, the general case of
transformations of n photons in d dimensions is still open.

Here we show blueprints for experimental realizations of
arbitrary multidimensional multiphotonic transformations.
We use the orbital angular momentum (OAM) of photons
as the high-dimensional degree of freedom, but the con-
cepts can readily be generalized to other high-dimensional
encoding systems [18]. The concept is based on encoding
the essence of quantum transformations in an ancilla state,
which mediates the necessary quantum information
between the involved photons. This is made possible by
a new quantum nondemolition measurement and the
exploitation of a genuine high-dimensional interferometer.
Several of our experimental proposals are feasible with
state-of-the-art technology. Interestingly, the concept of
encoding transformations in ancillary states is reminiscent
of the first work on linear optics quantum computing by
Knill, Laflamme, and Milburn [14] and by Gottesman and
Chuang [19]. These researchers have shown that efficient
quantum computation can be achieved with linear optics
and access to a sufficiently large entangled quantum state.
Our concept for high-dimensional multiphotonic gates

has many potential applications. It could enable the first
proof-of-principle experiments toward high-dimensional
quantum computation [20,21]. As an example, encoding
qubit information in high-dimensional systems has signifi-
cant advantages in robustness against errors [22,23] and
can reduce quantum circuit complexities [24,25], and high-
dimensional error-correction codes have shown advantages
in terms of resources [26,27]. All of these examples require
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high-dimensional multiqudit gates, especially high-dimen-
sional generalizations of the CNOT such as the CSUM gates,
which we explain here.
High-dimensional multiphoton gates can be used for

Bell-state or Greenberger–Horne–Zeilinger-state measure-
ments, which are an essential requirement of quantum
communication protocols. Therefore, the experimental
setups proposed here can enable complex high-dimensional
multiphotonic quantum teleportation and entanglement
swapping and thereby form a fundamental element for
high-dimensional quantum repeaters or high-dimensional
quantum dense coding. Additionally, we introduce the first
high-dimensional counterparts and extensions of quantum
nondemolition measurements, which could find indepen-
dent applications in quantum protocols.
From a conceptual point of view, the gates presented here

are based on independent access to quantum states with
different parities and can thus be generalized to other
photonic degrees of freedom and potentially also to other
quantum systems beyond quantum photonics.
Inspirations from computers.—We discovered the initial

concepts presented here via computer-designed experi-
ments using the algorithm MELVIN [28]. To do that, we
had to formulate the question of effective photon-photon
interaction in the most general way. The total search space
of quantum optical setups here corresponds to roughly
1030–1040 possibilities. Efficient exclusion principles
allowed us to significantly reduce the number of calcula-
tions (details in the SM [29]). A total of roughly 150 000
CPU hours has then finally uncovered the seed of ideas we
present in this manuscript. The human scientists in our team
were subsequently able to understand computer-inspired
ideas. As a consequence, we were able to exploit and
generalize those ideas to many other high-dimensional and
multipartite cases without the requirement of performing
other expensive calculations. The potential of scientifically
interpretable designs from computers that can inspire
conceptual insights is widely unexplored. The idea is not
restricted to the design of quantum experiments but could be
applicable to many other areas of physics (see [30] for a
concise overview of computer-inspired designs in physics).
High-dimensional control operations.—The simplest

nontrivial case of a multiphotonic transformation is a
two-dimensional CNOT gate. The four transformations are
written as

CNOTj0; 0i ¼ j0; 0i; CNOTj0; 1i ¼ j0; 1i;
CNOTj1; 0i ¼ j1; 1i; CNOTj1; 1i ¼ j1; 0i: ð1Þ

A more compact way is

CNOTjc; ti ¼ jciX̂cjti ¼ jc; ðcþ tÞ%2i; ð2Þ

where % stands for the modulo operation, and X̂ stands for
the Pauli-X operation (with X̂j0i ¼ j1i; X̂j1i ¼ j0i, or

more compactly, X̂jni ¼ jðnþ 1Þ%2i). Thus, one can
think about the CNOT as an X̂ operation applied c times
on the target photon. Crucially, the CNOT operates coher-
ently on superpositions of terms in Eq. (1), which distin-
guishes it from classical operations and enables its usage in
quantum applications.
We generalize the concept to high-dimensional systems

[25,31,32]. A high-dimensional generalization of the CNOT

is a controlled-X̂, CX̂, which acts as

CX̂jc; ti ¼ jciX̂c
djti ¼ jc; ðcþ tÞ%di; ð3Þ

with the high-dimensional Pauli-X̂ gate acting as
X̂jni ¼ jðnþ 1Þ%di. Informally, we increase the value of
the target photon by the value of the control photon (modulo
d). This can also be considered as a CSUM gate.
Generalizations of other quantum gates are controlled-
controlled-X̂ gates (CCX̂, which generalizes the important
three-qubit TOFFOLI gate) acting on two control photons
and one target as CCX̂jc1; c2; ti ¼ jc1; c2iX̂c1·c2

d jti ¼
jc1; c2; ðtþ c1 · c2Þ%di, and CPHASE acting as
CPHASEjc1; c2i ¼ wc1·c2 jc1; c2i (where ω ¼ ei2π=d, which
areessential components in thegenerationofgraphstates that
are used in measurement-based quantum computing [33]).
Experimental concepts.—Here we present the experi-

mental concepts to perform high-dimensional multipho-
tonic transformations. We consider the OAM of photons as
the discrete degree of freedom [34,35], which means that
j2ia stands for a single photon in path a with OAM value
l ¼ 2. However, our concept is general enough that it can
be translated to any other discrete high-dimensional sys-
tem, such as path encoding or time encoding, or potentially
even beyond photons.
First, we explain how a well-studied two-input two-

output optical element [36] can be used in a genuine three-
dimensional way. This element is crucial for what comes
next, a step by step construction of a three-dimensional
generalization of a CNOT. We show how a three-photon
ancilla state can effectively transform a three-dimensional
target photon. Then we introduce a new experimental
nondestructive measurement scheme to extract the quan-
tum information of a three-dimensional control photon.
The combination of these two structures leads to a full
three-dimensional CX̂ gate. Finally, we show experimen-
tal methods to generate other complex multiphotonic
transformations.
Genuine high-dimensional two-input two-output

element.—Conventionally, two-input two-output elements
perform either the same action on all incoming modes (such
as the beam splitter, which transmits or reflects an incoming
photon purely by chance) or two different actions on two
classes of modes (such as the polarizing beam splitter,
which transmits horizontally polarized photons and reflects
vertically polarized ones).
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A key understanding is that a well-established exper-
imental element can actually perform three different trans-
formations [see Fig. 1(a)]. A second-order parity sorter will
transmit modes j0i, j4i, and j8i and reflect j2i, j6i, and
j10i. Interestingly, for odd modes the PS2 performs another
transformation: it splits the wave function by chance into a
reflected and transmitted beam (just as a beam splitter).
This is important because, in this way, we can mix
deterministic and probabilistic operations at a single
element.
Controlling a photon by other photons.—Now we show

how a three-dimensional photonic state can be controlled
with three other photons. The correct transformation is
heralded by the simultaneous clicks of three detectors,
D1–D3 [see Fig. 1(b)]. The three photons from a control-
ling state jψCSi are combined with a target photon at three
PS2 [explained in Fig. 1(a)]. In front of every detector is
a mode filter, which projects the photons into the state

ð1= ffiffiffi

2
p Þðj0i þ j1i=j3i=j5iÞ. A photon in the state j0i is

deterministically transmitted to the detectors. An odd
photon splits probabilistically at the PS2. In order that
all detectors fire simultaneously (and a photon at the
output), the state jψCSi is prepared in such a way that
the target input photon has to go to one of the detectors and
the output photon is replaced by one from jψCSi. In this
way, only one photon configuration can lead to simulta-
neous detections in detectors D1–D3, which are shown in
Fig. 1(b). All other configurations lead to at least one
detector not firing or no photon leaving the setup. By
changing the jψCSi, we can perform various other manip-
ulations of the target photon. The three examples of jψCSi
in Fig. 1(c)–(e) will lead to a X̂ transformation controlled
solely by the three photons of jψCSi.
Quantum nondemolition measurement and a three-

dimensional CX̂.—Our goal is to generate, as a first
example, a three-dimensional CX̂ (CX̂jc; ti ¼ jciX̂cjti)

FIG. 1. An ancilla state-based setup for three-dimensional control gates X̂, X̂2, and X̂3. (a) A genuinely three-dimensional action of a
second-order parity sorter (PS2). On the left is the physical implementation as an interferometer with Dove prisms that introduces a
reflection and a mode-dependent phase of α ¼ 0 or α ¼ lπ=2, introduced by Leach et al. [36]. Right, the abstract representation of the
element. It can separate photons deterministically with mode j0i (transmitted) from photons with mode number j2i (reflected). Crucial
for our requirements is that photons with odd mode numbers are randomly separated into two output paths, just as in a conventional
beam splitter. Thus, the PS2 is a two-input, two-output element, which can perform entirely different transformations on three orthogonal
modes. (b) The state of a three-photon state jψCSi determines the transformation of the target photon. The target photon is overlapped
with the three ancilla photons at a PS2 each. One output mode is connected to a detector, which heralds a correct transformation. If all
detectors see a photon, the transformation was successful, and the output photon has the correct state. Importantly, PS2 transmits modes
j0i and probabilistically splits odd mode numbers. The state is encoded in the odd number space fj1i; j3i; j5ig. The desired
transformation can be achieved by adjusting the ancilla state. jþi0;n ¼ ðj0i þ jniÞ= ffiffiffi

2
p

stands for projections into a two-dimensional
subspace. (c)–(e) We show the X̂ transformation in detail. The ancilla state for the X̂ transformation is jψCSi ¼
ð1= ffiffiffi

3
p Þðj3; 0; 0i þ j0; 5; 0i þ j0; 0; 1iÞ, which is a three-photon W-state [37] (up to local transformations), and its generation has

been discussed in [38,39]. If the target photon is j1i, the only way to have all detectors see a photon (after the filter) is to have the photon
in path a being j3i which leaves to the output port and the photons in path b and c both being in the state j0i and going to detectors D2
and D3. This happens with a probability of p ¼ 0.54 because odd modes need to reflect in a specific way four times. The other two terms
of jψCSi will not be able to cause all three detectors, D1–D3, to click. The state j0; 5; 0i will not be able to create a click in detector D2,
and j0; 0; 1i will not produce a click in either D1 or D3. Therefore, the pattern in the image is the only possible combination. Similar
reasoning leads to the conclusions for the target photons being in j3i and j5i. Exactly the same logic holds for the other two types of
transformations: X̂2 with jψCSi ¼ ð1= ffiffiffi

3
p Þðj5; 0; 0i þ j0; 1; 0i þ j0; 0; 3iÞ and X̂3 with jψCSi ¼ j0; 0; 0i. For equal transformation

probability, the ancillary states need to be weighted, as shown in Fig. 3 and the Supplemental Material (SM) [29].
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using an ancilla state that mediates the information from the
control photon to the target photon. Above we have already
seen how jψCSi can control a target photon. Of course, later
jψCSi will become part of the mediating ancilla state. The
remaining question now is how to extract information from
the control photon (in an examination state jψESi) without
destroying its quantum information. We employ a similar
idea as before: using two ancilla photons and two detectors,
the quantum information is correctly extracted if the two
detectors fire simultaneously. In our example, Fig. 2, jψESi
can be one out of three quantum states. Each of them
makes detectors D1 and D2 click for a different input state.

For example, if jψESi ¼ j0; 0i, the two detectors will click,
and a photon will exit the setup only if the input photon
was in the state j0i. In all other cases, either no photon exits
the setup (which can be considered as a loss) or not all
detectors fire simultaneously. However, if they click, we
know the photon was in the state j0i without destroying its
quantum information.
By now, we can extract quantum information from the

input state without destroying it, and we can control the
target transformation using ancillary photons. Finally, we
can combine these two ingredients. We use an entangled
state that combines jψESi and jψCSi into jψAnci, as shown
in Fig. 3(a). For example, if the input state is j1i, only
ψES ¼ j1; 0i can lead to clicks in detectors D1 and D2.
Thus, jψAnci collapses into jψAnci1 ¼ ð1= ffiffiffi

3
p Þðj3; 0; 0iþ

j0; 5; 0i þ j0; 0; 1iÞ. This state introduces an X̂ transforma-
tion at the target photon, exactly as described in Fig. 1.
Therefore, a click in detectors D1–D5 heralds a successful
three-dimensional controlled-X̂ transformation. The con-
cept can be generalized to arbitrary d-dimensional con-
trolled-X̂ transformations, as we show in the SM [29]. In
Fig. 3(b), we show a high-dimensional controlled-con-
trolled-X̂ (a generalization of the TOFFOLI gate), and in
Fig. 3(c), we show a three-dimensional CPHASE.
The setups depend on post-selection and heralding of

ancillary states. The gate success probability for a three-
dimensional CX̂ is equal for all modes, and we give the
intuition for the case of c ¼ j0i. The transformation only
works if the ancillary state collapses into j00ij000i with a
probability of P1 ¼ 1=19. Further, the target photon exits in
the output mode, three PS2 need to be passed, each with a
probability of p ¼ 1=2 for odd modes, leading to a total
probability of P2 ¼ 1=ð23 × 19Þ ¼ 1=152. Finally, each
detector projects into a superposition of two modes, which

FIG. 2. High-dimensional quantum nondemolition measure-
ment—extracting information about the control photon without
destroying it. (a) We combine the control photon with a two-
photon examination state jψESi at a PS1 (which transmits even
modes and reflects odd modes) and a PS2 [as described in
Fig. 1(a)]. (b)–(d) For each of the possible control states j0i, j1i,
and j2i, there is only one combination that produces clicks in the
detectors D1 and D2. If both detectors register a photon, the
output photon has the correct mode number. Thus, we can probe
the control photon with three different ancilla states, and we learn
about its state, heralded by a photon in both detectors.

FIG. 3. Three high-dimensional multiphotonic quantum transformations. (a) A high-dimensional two-particle three-dimensional
controlled-X̂3 gate, which can be described as T̂jc; ti ¼ jciX̂cjti ¼ jc; ðcþ tÞ%3i. It is a combination of the elements in Fig. 1 and
Fig. 2, including correct weights to take mode-dependent success probabilities into account. If all detectors (D1–D5) click
simultaneously, the transformation is successful and the two photons are emitted in the correct state. (b) A controlled-controlled-
X̂4 quantum gate with two control photons being in a two-dimensional state while the target photon is in a four-dimensional state. The
explicit transformation is T̂jc1; c2; ti ¼ jc1; c2iX̂c1 ·c2 jti ¼ jc1; c2; ðtþ c1 · c2Þ%4i. (c) A three-dimensional controlled phase operation
combines twice the method of Fig. 2. The transformation is T̂jc1; c2i ¼ ωc1 ·c2 jc1; c2i. d1 ¼ expðiπ=4Þ and d2 ¼

ffiffiffi

2
p

are normalization
constants, and ω ¼ expði2π=3Þ is a root of unity.
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would constitute another reduction of the probability by
Ptriggers ¼ 1=2#ðtriggersÞ. However, the triggers can be con-
structed by multioutcome measurements (projecting both
into ðj0i � jniÞ= ffiffiffi

2
p

in two separate detectors). The results
from different detector-click patterns can then be propa-
gated either by classical post-processing or active
feed-forward methods. Thereby, the fundamental success
probability of the three-dimensional CX̂ gate in Fig. 3(a)
is P3dCX̂ ¼ 1=ð23 × 19Þ ¼ 1=152. In an analog way, one
finds that the success probability for the 2 − 2 − 4 dimen-
sional CCX̂ gate in Fig. 3(b) is PCCX̂ ¼ 1=ð24 × 11Þ ¼
1=176 and for the three-dimensional CPHASE in Fig. 3(c)
is PCPhase ¼ 1=16.
General multiphotonic high-dimensional transforma-

tions.—We can apply the same idea to more complex
transformations, such as controlled-controlled-X̂ in
Fig. 3(b) or a controlled-phase gate in Fig. 3(c). In both
cases, we apply the same concepts as shown in Figs. 1
and 2. More general transformations, which are not
simple control operations (an example is T̂jc1; c2i ¼
jðc1 þ c2Þ%d; ð2c1 þ c2Þ%di), can be generated in a very
similar way (see the SM [29]).
One important remaining question is how to create the

ancillary state experimentally. The last five years have seen
a plethora of high-dimensional multiphotonic experiments
[40–44], indicating that large classes of quantum states are
accessible. Recently, entanglement by path identity has
been proposed [38], which is a conceptually very efficient
method to produce high-dimensional multiphotonic entan-
glement. A map from entangled states to graph theory
allows one to analyze the generation of these states in
a systematic way (see in particular [39,45] and the first
experimental demonstration [46]). In addition, high-
dimensional Bell-state measurements [47,48] can be used
to entangle separated quantum states, and quantum tele-
portation is used to perform photon-number dependent
measurements [40]. We show in the SM [29] how to create
several of these states using well-known experimental
concepts.
Conclusion and outlook.—We have presented general

multiphoton high-dimensional transformations that rely
solely on known experimental techniques. Among them
are high-dimensional generalizations of the crucial CNOT,
TOFFOLI, or CPHASE gates. Several of these concepts can
readily be implemented in laboratories around the world.
The experimental configurations presented here are

probabilistic and require a number of additional ancillary
photons. This is expected, as the same holds true for the
well-studied two-dimensional case. In order to improve the
practicality of these setups, it would be interesting to study
how (if possible) to reduce the number of ancillary photons
and increase the success probability of the gates.
For experimental implementation, high stability of the

experimental setups will be necessary. This can be done in

bulk optics (such as shown here [47]) or by implementing
these methods into integrated circuits [4,6,49], ideally with
the possibility of having photon-pair sources on chip
[50–53], to produce ancilla states in a stable manner.
Therefore, it will be interesting to translate the concepts
presented here to the path-encoding degree of freedom.
The concepts for these gates have been discovered using

computer-designed quantum experiments, specifically a
highly efficient version of the algorithm MELVIN [28].
Several other automated algorithms have been generated
recently for the design of novel quantum-optical experi-
ments [30,54–58]. Our result indicates the possibility that
computers can be used in a widely unexplored way, namely
to inspire human scientists.
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