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We demonstrate the existence of finite-component multicriticality in a qubit-boson model where biased
qubits collectively coupled to a single-mode bosonic field. The interplay between biases and boson-qubit
coupling produces a rich phase diagram which shows multiple superradiant phases and phase boundaries of
different orders. In particular, multiple phases become indistinguishable in appropriate bias configurations,
which is the signature of multicriticality. A series of universality classes characterizing these multicritical
points are identified. Moreover, we present a trapped-ion realization with the potential to explore
multicritical phenomena experimentally using a small number of ions. The results open a novel way to
probe multicritical universality classes in experiments.
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Quantum multicriticality, where multiple phases simul-
taneously become identical at a specific quantum critical
point, is a fascinating phenomenon as well as fundamental
concept in the study of quantum phase transitions [1]. At a
multicritical point, the system is governed by a new
universality class, which results in qualitatively different
critical behaviors including new scaling fields and critical
exponents [2]. Owing to this unique nature, intriguing
features and novel universality classes have been found in
various multicritical systems, including magnetic materials
[3], superconductors [4], optical systems [5], and various
condensed matter systems [6–15].
Despite the novelty and significance, the investigation of

quantummulticriticality is still very limited due to enormous
challenges in experiments. To reach a high-order critical
point, multiple parameters need to be fine-tuned precisely,
e.g., accurate adjustments of composition andmagnetic field
are both required to access the tricritical point in Nb1−yFe2þy
[16]. This imposes a much stricter requirement on the
controllability of actual systems compared to normal critical
cases [16–18]. Furthermore, while universality class plays a
central role in multicritical phenomena, its exploration is
even more difficult since universal behavior emerges only
when the system size is sufficiently large, and such behavior
is vulnerable to environmental noises owing to the long
preparation time of the ground state caused by the critical
slowing down. To reveal a universality class, we need to
maintain the controllability of a large-size system while
preserving universal behavior from noise effects, which is
extremely difficult in realistic settings [19].
Instead of entering the large-size limit, a finite-component

systemmay also undergo a quantum phase transition (QPT)

if the thermodynamic limit can be reached in an alternative
way. This is the case for the Dicke model [20–35], which
describes a bosonic mode collectively coupled to multiple
qubits. In this model, a second-order QPTappears when the
ratio of the mode frequency to the qubit transition frequency
approaches zero [36–38]. This model can be realized in
different systems ranging from ultracold atoms [39–44] to
superconducting circuits [45–48], where some of them, e.g.,
trapped-ion systems, have shown the possibility of achiev-
ing a finite-component QPT due to its excellent control-
lability in the required critical regime [49–53]. For such
systems, an interesting question arises: can multicriticality
be induced while maintaining the system size small? If so,
this would be highly desirable since it enables the study of
multicriticality in a systemwith sufficient controllability and
noise suppression ability due to small system size. More
interestingly, is it possible to explore universality classes
through probing the critical behavior under realistic
conditions?
In this Letter, we show the existence of quantum multi-

critical points in a finite-component qubit-boson model via
engineering qubit biases. We show that qubit biases can
introduce novel features in the phase diagram, and multi-
critical points emerge in certain bias configurations. These
points can be characterized by a series of multicritical
universality classes. Critical exponents and scaling relations
describing theseuniversality classes are alsoobtained.Finally,
we consider a trapped-ion realization with the potential to
exploremulticritical phenomena experimentally using a small
number of ions. The numerical results show that it is possible
to correctly reveal universality classes at multicritical points
bynonequilibriumuniversal functions evenwithnoise effects.

PHYSICAL REVIEW LETTERS 125, 050402 (2020)

0031-9007=20=125(5)=050402(6) 050402-1 © 2020 American Physical Society

https://orcid.org/0000-0001-8869-4868
https://orcid.org/0000-0002-5373-4417
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.050402&domain=pdf&date_stamp=2020-07-28
https://doi.org/10.1103/PhysRevLett.125.050402
https://doi.org/10.1103/PhysRevLett.125.050402
https://doi.org/10.1103/PhysRevLett.125.050402
https://doi.org/10.1103/PhysRevLett.125.050402


Model and phase diagram.—We consider a model that
features a rich phase diagram with finite-component multi-
critical phenomena. The considered system consists of a
bosonic field coupled to qubits with a staggered bias con-
figuration (Fig. 1), characterized by the Hamiltonian (ℏ ¼ 1)

H ¼ ωaþaþ
XM

j¼1

�
Ω
2
ðJz;2j−1 þ Jz;2jÞ þ

ϵj
2
ðJx;2j−1 − Jx;2jÞ

�

þ gffiffiffiffiffiffiffi
2N

p
XM

j¼1

ðJx;2j−1 þ Jx;2jÞðaþ þ aÞ; ð1Þ

where aþ (a) is the creation (annihilation) operator of the
bosonic fieldwith frequencyω. Here2N qubits are split intoM
subsets, and for each subset qubits are further divided into two
halves which are equipped with biases with the same magni-
tude (ϵj for the jth subset with qubit number 2Nj) but opposite

signs. The collective spin operators J2j−1 ¼
PNj

i¼1 σ
ðiÞ
j =2 and

J2j ¼
PNj

i¼1 σ
ðNjþiÞ
j =2 are composed of the Pauli operators

σðiÞj describing the ith qubit within the jth subset,Ω and g are
the energy spacing of qubits and qubit-boson interaction
strength, respectively. In the absence of biases, the system
returns to the original Dicke model and undergoes a second-
order QPT in the ω=Ω → 0 or N → ∞ limit [36]. With the
staggered biases, the system possesses a Z2 symmetry
associated with the parity transformation ða; Jx;2j−1; Jx;2jÞ →
ð−a;−Jx;2j;−Jx;2j−1Þ. Thebiases canbe introduced invarious
realizations of the Dicke model, e.g., by applying effective
transverse Zeeman fields to atoms or ions systems [54], or
tuning the persistent currents in superconducting qubits [47].
The biases can introduce important novel features in the

phase diagram. To investigate the phase structure, we first
resort to the mean-field (MF) approach and the ground-state
properties can be analyzed by minimizing the energy func-
tionalperqubit (see theSupplementalMaterial [55] fordetails)

EðzÞ ¼ z2

4g̃2
−
1

4
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nj
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where nj ¼ Nj=N is the number fraction of the jth subset,
g̃ ¼ 2g=

ffiffiffiffiffiffiffi
ωΩ

p
and ϵ̃j ¼ ϵj=Ω are the dimensionless cou-

pling strength and bias, respectively, and z ¼ 2
ffiffiffi
η

p
g̃φ is the

rescaled order parameter characterizing the superradiant
transition where φ ¼ hai and η ¼ ð2NΩÞ−1ω are the
bosonic coherence and frequency ratio, respectively. The
superradiant QPT is marked by a transition from normal
phase (NP) (φ ¼ 0) to superradiant phase (SP) (φ ≠ 0)
accompanied by the Z2 symmetry breaking, and the
corresponding critical points form a manifold in the
parameter space. In this manifold, multicritical points of
at most (M þ 2)th order can arise, which can be shown by
expanding EðzÞ up to (2M þ 4)th order of z as EðzÞ ¼
E0þvðrz2=2þP

M
j¼1ujz

2ðjþ1Þ=ð2jþ2Þþz2ðMþ2Þ=ð2Mþ4ÞÞ.
For appropriate fnjg settings, it is possible that the
coefficients r and u1;…; uM vanish simultaneously since
there existsM þ 1 independent parameters g̃ and fϵ̃jg. This
point is nothing but an (M þ 2)th order critical point if it
further satisfies v > 0. For a complete description of
this multicritical point, we further introduce symmetry-
breaking biases Hns ¼

P
j hjðJx;2j−1 þ Jx;2jÞ=2 to the

Hamiltonian. The resulting energy functional EnsðzÞ can
be expanded as EnsðzÞ¼EðznsÞþv

PMþ1
j¼1 wjz

2j−1
ns =ð2j−1Þ

up to Oðh̃jÞ, where h̃j ¼ hj=Ω and zns ¼ z − z0 with the
constant z0 chosen to remove the z2Mþ3

ns term [55]. Then at
this critical point, r, fujg and fwjg form a complete set of
scaling variables, and the critical behavior can be described
in terms of these variables.
The simplest M ¼ 1 case permits the appearance of

tricritical points (TCPs). Figure 2(a) presents the extended
phase diagram in the parameter space ðg̃; ϵ̃; h̃Þ (subscripts
of ϵ̃1 and h̃1 are omitted in this case). Here the second-order
critical line Lλ turns into a triple line Lτ where three phases
coexist as the bias ϵ̃ is strong enough, and their meeting
point additionally connects to two wing critical lines L�.
The critical lines Lλ and L� further connect to the
coexistence surfaces S0 and S�, respectively. These struc-
tures are the signatures of tricriticality [56], and the meeting
point is a TCP whose location can be determined by
u ¼ r ¼ 0, i.e., ðg̃T ; ϵ̃TÞ ¼ ½ð5=4Þ3=4; 1=2�. The occurrence
of tricriticality can also be observed through the ground
state order parameter, as shown in Fig. 2(b). Clearly, the
tricriticality causes a bifurcation of the first-order surfaces
S0 into two wings S� ending at L�.
The next caseM ¼ 2 allows the existence of tetracritical

points (TECPs) where four phases become identical simul-
taneously, as shown in Figs. 2(c) and 2(d) which illustrate
the phase diagram and the corresponding order parameter
zG for fixed ϵ̃2, respectively. When ϵ̃2 is small, two pairs of
SPs arise with a low or high bosonic coherence. Such a
difference in superradiant properties indicates that the
interplay between biases and boson-qubit coupling induces
different collective behaviors of qubits. Moreover, a

M M

Subset 1 Subset M

FIG. 1. A schematic illustration of the qubit-boson model with
staggered bias configuration [Eq. (1)]. Here a bosonic field with
frequency ω is collectively coupled to 2N qubits (blue spheres)
which are separated into M subsets. Within each subset, qubits
are divided into two halves and each half experiences a transverse
field with the same magnitude and opposite direction to the other.
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liquid-gas-like phase transition separates two SP pairs by a
first-order quadruple line Lχ where four SPs coexist
[Fig. 2(e)], and at its end point the QPT turns into second
order where the difference between two SP pairs vanishes.
As ϵ̃2 is increased to a specific value ϵ̃2;Te, this end point
will finally reach the second-order critical line Lλ deter-
mined by r ¼ 0. After this value, the end point stays on Lλ

and turns into a TCP which connects to a triple line Lτ.
Thus these end points form a quadruple line and a tricritical

line when ϵ̃2 < ϵ̃2;Te and ϵ̃2 > ϵ̃2;Te, respectively, and at the
meeting point all four SPs become indistinguishable, which
signifies the appearance of tetracriticality. The tetracritical-
ity can also be revealed by an energy functionalEðzÞ, where
the minima corresponding to four SPs coalesce at the TECP
[Fig. 2(f)]. Its location can be determined numerically as
ðg̃Te; ϵ̃1;Te; ϵ̃2;TeÞ ≈ ð1.30; 0.81; 0.15Þ through the equation
u1 ¼ u2 ¼ r ¼ 0. For M > 2 cases, higher order critical
points are possible. For example, a pentacritical point,
where the NP and four SPs simultaneously become
identical, exists at ðg̃P; ϵ̃1;P; ϵ̃2;P; ϵ̃3;PÞ ≈ ð1.36; 0.98; 0.37;
0.17Þ when N1 ¼ 4N2 ¼ 4N3.

Scaling behavior and universality.—At an (M þ 2)th
order critical point (g̃ðMÞ; fϵ̃j;ðMÞg), the system belongs to a
different universality class compared to lower-order cases
and new scaling behavior emerges with different critical
exponents. The scaling behavior of the ground-state order
parameter zG can be obtained by the equation ∂Ens=∂z ¼ 0

and takes the form zG ¼ w
βw1
1 Mns;zðfxAgA¼r;fujg;fwjgj≠1Þ,

where xA ¼ Aw
−ϕw1 ;A

1 and Mns;z is the scaling function
[55]. The exponent βA describes the singularity related to
the variable A and can be calculated as βr ¼ 1=ð2M þ 2Þ,
βuj ¼1=ð2M−2jþ2Þ and βwj

¼ 1=ð2M − 2jþ 5Þ, while
the exponentϕA1;A2

¼ βA1
=βA2

characterizes the crossover
between different singularities related to A1 and A2.

We now include quantum fluctuations and investigate
the energy gap above the ground state. In the ω=Ω → 0
limit, the low-lying energy states behave as a harmonic
oscillator, and the effective Hamiltonian can be written as
Heff ¼ εaþaþ C where ε is the excitation energy and
C is a constant [55]. This excitation energy vanishes at
second- and higher-order critical points since ε satisfies
ε2 ∝ ∂2Ens=∂z2jz¼zG and the rhs is zero at these critical
points. This can also be demonstrated in Fig. 2(c), which
shows the closing of the energy gap near the critical lines
Lλ and L�. Furthermore, near an (M þ 2)th order critical
point, the relation between ε and ∂2Ens=∂z2 provides the
scaling relation ε ¼ jw1jγε;w1Mns;εðfxAgÞ, where γε;w1

¼
ðM þ 1Þ=ð2M þ 3Þ [55]. Thus the leading singularity is
ε ∼ fh̃γε;w1j g when approaching the critical point from the
directions with w1 ≠ 0. In Fig. 3(a), we show fits of γε;w1

which are obtained numerically, and it converges to the
analytical values as approaching the critical point. In the
symmetry case fhjg ¼ 0, the leading singularity becomes
ε ∼ rγε;r ∼ δ

γε;r
ðg;fϵjgÞ for all directions with r ≠ 0 where

δg ¼ g̃ − g̃ðMÞ and δϵj ¼ ϵ̃j − ϵ̃j;ðMÞ, and an M-independent
exponent γε;r ¼ 1=2 presents [inset of Fig. 3(a)].
The difference between these critical points can be

further revealed by considering the finite-frequency scal-
ing, which describes the emergence of critical behavior
as η approaches zero. The results show that at the critical
point, the excitation energy vanishes as ε ∼ ηδε where

FIG. 2. (a) Phase diagram in the tricritical case (M ¼ 1). The
solid lines and dashed line represent the second-order critical lines
and triple line, respectively. The first-order coexistence surfaces S0
separate two superradiant phases with different order parameter
sign, while S� separate a normal phase and two superradiant
phases, respectively. (b) The ground state order parameter zG (left
panels) and the excitation energy ε (right panels) as functions of g̃
and h̃. (c) Phase diagram in the tetracritical case (M ¼ 2 and
N1 ¼ 3N2), where Δg ¼ g̃ − g̃rðϵ̃1; ϵ̃2Þ is the distance to Lλ for
given ϵ̃1;2. g̃rðϵ̃1; ϵ̃2Þ is the coupling value on Lλ when ϵ̃1;2 are
fixed, and is the solution to rðg̃r; ϵ̃1; ϵ̃2Þ ¼ 0 sinceLλ is determined
by r ¼ 0. (d) The ground state order parameter jzGj for fixed ϵ̃2. (e),
(f) Schematic illustrations of the energy functional EðzÞ: (e) The
system moves across Lχ from the low- (dashed line) to the high-
bosonic-coherence (solid line) superradiant phase. (f) The system
moves along Lχ (dashed line) then into the line of end points
(dotted line) and finally reaches the tetracritical point (solid line).
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δε¼γε;r=ξr¼γε;w1
=ξw1

is the finite-frequency scaling expo-
nent, and ξr¼ðMþ3Þ=ð2Mþ2Þ, ξw1

¼ ðM þ 3Þ=ð2M þ 3Þ
are observable-independent exponents which are specific to
the universality class [Fig. 3(b)] [55]. Apparently, multi-
critical points with different orders do indeed belong to
different universality classes with distinct scaling fields and
critical exponents. These classes are the extensions of the
Dicke universality class M ¼ 0 in the multicritical regime.
Experimental realization.—Instead of the equilibrium

approach, we explore the universality of multicritical points
via nonequilibrium scaling functions arising from near
adiabatic quenching. Such functions are more robust than
equilibrium scaling functions under environmental noises
due to lower time requirement [49,57,58]. Therefore, we
consider a linear quench g̃ðtÞ ¼ g̃ðMÞt=τ from t ¼ 0 to t ¼ τ
in the symmetry case while fixing the biases ϵ̃j ¼ ϵ̃j;ðMÞ,
where τ is the duration of quench. The system is initially
prepared in the ground state, and we focus on the residual
qubit population hJzir ≡ jhJzifðη; τÞ − hJziðηÞj at the end
of the quench since hJzi can be measured with high fidelity
in the trapped-ion setup [50]. Here hJzifðη; τÞ and hJziðηÞ
denote the expectation value of Jz after quench and that of
the ground state when t ¼ τ, respectively. For large enough
τ, the adiabatic condition can be satisfied outside the critical
regime during quenching, and failed only near the critical

point. Thus the majority of excitations are produced during
the nonadiabatic quench inside the critical regime, and
hJzir satisfies a scaling relation [55]

hJzir ¼ η1−γε;r=ξrSJzðτηð1þγε;rÞ=ξrÞ; ð3Þ

where SJz is the nonequilibrium scaling function. If
η−1þγε;r=ξrhJzir is plotted as a function of τηð1þγε;rÞ=ξr , all
data points with different η should collapse to a single
curve, which allows us to determine the order of a critical
point and reveal its universality class via ξr.
This approach is possible in experiments. For simplicity,

we focus on the tricritical case, and consider an exper-
imental realization comprised of two trapped ions which
are cooled down to their motional ground states. Here
qubits are encoded using different electronic states [59],
while the bosonic field is the center-of-mass vibrational
mode supported by the Coulomb repulsion and confining
potentials [60]. The qubit biases can be generated by
additional near-resonant lasers [54]. Finally, the spin-
phonon coupling is induced by a pair of laser beams with
frequencies slightly detuned from the red and blue side-
bands, respectively [50,54,61]. In this setup, the system can
be described by an effective Hamiltonian which has the
desired form Eq. (1) with N ¼ M ¼ 1, and the parameters
associate with the experimental ones as ω ¼ ðδb − δrÞ=2,
Ω ¼ ðδb þ δrÞ=2, g ¼ ffiffiffi

2
p

η0Ω0 and ϵ ¼ Ωp [55]. Here δb
(δr) is the detuning to the blue (red) sidebands, Ω0 and η0
are the Rabi strength and Lamb-Dicke parameter of the
blue (red)-sideband lasers, respectively, and Ωp is the Rabi
strength of the laser which produces staggered biases. For
typical trapped-ion platforms, it is possible to achieve ω ¼
ð2πÞ200 Hz and frequency ratios 50 ≤ Ω=ω ≤ 400 [59].
To reach the tricritical point, it is necessary to realize
the Rabi frequencies 9.9 ≤ Ω0=ð2πÞ ≤ 27.9 kHz and 5.0 ≤
Ωp=ð2πÞ ≤ 40.0 kHz (η0 ¼ 0.06 is considered), which are
attainable in experiment [59].
We now evaluate whether the scaling function can be

correctly retrieved when noise effects are taken into account.
Here we only consider phonon heating as the main noise
source since the qubit dephasing produced by the magnetic-
field fluctuations can be effectively suppressed via continu-
ous dynamical decoupling [62–64], and the qubit decay is
much slower than thephononheating rate (∼1 s qubit lifetime
vs ∼100 ms phonon coherence time) [65]. Then the quench
process is governed by a phenomenological master equation
_ρ ¼ −i½Hðg̃ðtÞÞ; ρ� þ γðnth þ 1ÞD½a� þ γnthD½aþ� where
D½A� ¼ AρAþ − fρ; AþAg=2, γ is the phonon-reservoir
coupling strength and nth is the mean phonon number when
the system is in equilibrium with the reservoir. The phonon
heating rate is set to a typical value γnth=ω ¼ 0.05 and the
effective temperature of the reservoir is high enough such that
γnth ≈ γðnth þ 1Þ. Figure 3(c) shows the quench results of
hJzir with the noise effects, where the quench time is chosen
in a range 0.75 ≤ ωτ ≤ 2 (3.75 ≤ τ ≤ 10 ms)which is much
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FIG. 3. (a) Fits of the critical exponents γε;w1
and γε;r [inset of (a)]

at critical points of different orders. (b) Fits of the critical exponent
δε. (c) Numerical results of the rescaled residual qubit population
S ¼ η−1þγε;r=ξrhJzir ¼

ffiffiffi
2

p ðω=ΩÞ−1=2hJzir after quench as a
function of the rescaled quench time T ¼ ωτηð1þγε;rÞ=ξr ¼
2−3=2ðω=ΩÞ3=2ωτ for different frequency ratio with noise effects
included. The black dashed line is the nonequilibrium scaling
function SJz obtained in the η → 0 limit numerically.
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shorter than the phonon coherence time. We can find that all
data points with different η collapse into a theoretical line of
SJz approximately, thus the scaling function SJz can be
faithfully retrieved under environmental noises. This allows
the identification of multicritical universality classes.
Conclusion.—In conclusion, we have shown that finite-

component multicriticality can be induced by the interplay
between qubit biases and boson-qubit coupling. In certain
bias configurations, multiple phases become indistinguish-
able and this relates to a high-order critical point which
resides between a multiple coexistence line and a lower-
order critical line in the phase diagram. These points can be
characterized by a series ofmulticritical universality classes.
Moreover, we have presented a trapped-ion realization with
the potential to explore multicritical phenomena experimen-
tally. Because of the small system size, we are able to retain
necessary controllability and coherence under realistic
conditions, thus making it possible for experiments to reveal
themulticritical universality classes through nonequilibrium
universal functions. Our work extends the multicriticality
study to finite-component systems, and thus opens a new
way of studying multicritical phenomena and provides a
promising platform for experimental exploration.
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