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In exponentially proliferating populations of microbes, the population doubles at a rate less than the
average doubling time of a single-cell due to variability at the single-cell level. It is known that the
distribution of generation times obtained from a single lineage is, in general, insufficient to determine a
population’s growth rate. Is there an explicit relationship between observables obtained from a single
lineage and the population growth rate? We show that a population’s growth rate can be represented in
terms of averages over isolated lineages. This lineage representation is related to a large deviation principle
that is a generic feature of exponentially proliferating populations. Due to the large deviation structure of
growing populations, the number of lineages needed to obtain an accurate estimate of the growth rate
depends exponentially on the duration of the lineages, leading to a nonmonotonic convergence of the
estimate, which we verify in both synthetic and experimental data sets.
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A key determinant of fitness in microbial populations is
the population growth rate [1–3]. For organisms such as
Escherichia coli which undergo binary fission, the expo-
nential growth rate of the population is determined by
single-cell properties such as generation time, defined as
the time from cell birth to division. In reality, any clonal
population of bacteria will exhibit a distribution of gen-
eration times due to a combination of intrinsic and
environmental factors [4–12] resulting in a distribution
of generation times, ψðτdÞ. The relationship between this
distribution and the population growth rate, Λ, has been the
subject of numerous studies. A key result is the Euler-Lotka
equation [1–3,13–15],

1

2
¼

Z
∞

0

ψðτÞe−Λτdτ; ð1Þ

which establishes a link between ψðτÞ and Λ. Equation (1)
is a variant of a relation originally obtained by Euler [16,17]
and later rediscovered by Lotka [18].
Despite the elegant simplicity of the Euler-Lotka

equation, it obscures the underlying relationship between
the stochastic dynamics along single lineages and the
population growth rate. The reason is that ψðτdÞ, like Λ,
is a property of the population rather than an intrinsic
property of individual cells and it is therefore unclear how
differences in single cell dynamics are reflected in ψðτdÞ.
Only in the special case where the generation time of a
newborn cell is completely uncorrelated with its immediate
ancestor, or mother, does ψðτdÞ correspond to the dis-
tribution of generation times along a single lineage [1,14].
When generation times are correlated between mother and
daughter cells, the distribution of generation times, fðτdÞ,

along a single lineage no longer contains enough informa-
tion to deduce the growth exponent Λ using Eq. (1). Such
correlations emerge naturally through feedback mecha-
nisms and are required to maintain homeostasis of cell
sizes [3,19,20].
The discrepancy between the statistics of a lineage and

those from the entire population, which determine the
population’s fitness, raises the question of how to quantify
fitness from data obtained from a single lineage, or a
collection of independent lineages (see Fig. 1). Such data is
typically obtained from mother machine experiments [21],
where independent lineages are tracked for long periods of
times in controlled conditions. Mother machine experi-
ments enable detailed measurements of single-cell dynam-
ics that would be impossible in bulk conditions. In contrast,
bulk experiments can be used to probe population-level
dynamics and measure fitness, but they are blind to the
physiological details at the microscopic level [21]. Here, we
present a lineage representation of the population growth
rate that connects the population dynamics to the statistics
along a single lineage, or a collection of independent
lineages.
Lineage representation.—A lineage-based representa-

tion of the population growth rate that is independent of
the model specifics can be derived using the division
distribution, denoted pTðnÞ, which can be obtained from
an exponentially growing population as follows. Suppose a
population of cells is grown for a time T and assume that
we have access to the generation times of individual cells
and the genealogical relationships between cells, as shown
in Fig. 1. We can randomly sample a lineage from the tree
by starting from the ancestral cell in the population and
randomly selecting one of its daughter cells with equal
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probability to obtain the next cell in the lineage. Repeating
this procedure yields a single lineage, as shown by the
highlighted paths in Fig. 1.
IfNðTÞ is the number of cells in the population at time T,

then there are exactly NðTÞ lineages, as each cell in the
final population corresponds to a distinct lineage. However,
by randomly selecting a lineage in the forward manner
described above, lineages with more divisions are less
likely to be selected, since each division decreases the
chance that we will travel down that specific path through
the tree. In particular, the probability of drawing any
specific lineage from the tree is 2−n. It follows that the

empirical distribution of divisions from lineages sampled
in this way, denoted p̂TðnÞ, is given by [22,23] p̂TðnÞ ¼
2−nNðn; TÞ. Here, Nðn; TÞ is a random variable represent-
ing the number of lineages with n divisions in a specific
realization of a growing population. Note that p̂TðnÞ
is also a random variable, and will therefore differ
between different realizations of the population tree. By
averaging over many realizations of the tree, we obtain the
division distribution: pTðnÞ≡ hp̂TðnÞitrees. It is important
to remember that pTðnÞ is distinct from what has been
called the retrospective distribution, defined as the prob-
ability of observing n divisions in a lineage obtained by
uniformly sampling a cell from the population at time T and
following its ancestors back in time [23].
We define the long term population growth rate as

Λ≡ lim
T→∞

1

T
lnNðTÞ: ð2Þ

This definition of Λ is justified in Supplemental Material
[24], where we show that this limit is self-averaging. In
order to expressΛ in terms of lineage statistics, we note that
a population tree in which every lineage has n divisions has
2n cells. Intuitively, averaging over the contribution of each
lineage to the total population therefore gives NðTÞ ¼
h2nip, so Eq. (2) can be expressed in terms of a lineage
representation (see the Supplemental Material [24] for a
proof),

Λ ¼ lim
T→∞

1

T
ln h2nip: ð3Þ

Here, the angular brackets denote an average over pTðnÞ.
The lineage representation in Eq. (3) establishes a relation-
ship between the lineage dynamics and the population
fitness. A similar formulation was used in Ref. [23] to
quantify how selection acts on an observable in a growing
population; however, our formulation differs in that the
average is taken over independent lineages rather than
lineages from a single growing population.
In order to apply the lineage representation of the

population growth rate to real data, we must develop an
understanding of how quickly it converges in the number of
lineages, M, and the duration of each lineage, T. However,
before presenting our convergence analysis, we establish
a relationship between the lineage representation and
the large deviation principle underlying the growth
rocess. This structure is best introduced with the example
below.
Explicit calculation of pTðnÞ for discrete Langevin

model.—We now perform an explicit calculation of
pTðnÞ for a specific model in which generation times
undergo a discrete Langevin process along a lineage,
referred to as the random generation time model
[1,2]. In this model, the generation time τ of a cell is
related to its mother’s generation time, τ0, according to
τ ¼ τ0ð1 − cÞ þ τ0cþ ξ, where ξ is a Gaussian with mean
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FIG. 1. (a) A population tree starting from a single ancestor.
The distinction is made between single lineages (highlighted) and
a population (black). Lineages can be sampled by traveling down
the tree and randomly selecting a daughter cell at the end of each
branch. The probability of selecting any specific lineage with n
divisions is 2−n. (b) M independent lineages of length T. For the
ith lineage, ni is the number of cell divisions along that lineage.
For each lineage we have shown the cell size, which typically
increases exponentially between divisions as a function of time.
The lineage division distribution can be approximated from these
independent lineages by recording the division events and using
the highlighted formula. Here, δn;m ¼ 1 if m ¼ n and 0 other-
wise. (c) A growing population of cells from which one can
compute the fitness directly by counting the number of cells as a
function of time [or utilizing Eq. (1)]. Using the lineage
distribution of divisions we can obtain the fitness from indepen-
dent lineages.
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zero and variance σ2ξ . It can be seen that the average
generation time along a lineage is hτi ¼ τ0. The parameter
c controls the strength of correlations between mother and
daughter cells. By evaluating a path integral (see the
Supplemental Material [24]), we obtain

pTðnÞ ¼ Ke−n½ð1−cÞ2=2σ2τ �ðτ0−T=nÞ2 ; ð4Þ
where K is a normalization constant independent of n and
σ2τ ¼ σ2ξ=ð1 − c2Þ is the variance in τ taken over a single
lineage.
The exponential form of Eq. (4) along with Eq. (3)

suggests that the population growth rate is dominated by a
particular value of n which maximizes the exponent of
2npTðnÞ. Treating n as a continuous variable and solving
for n in ∂=∂n½n ln 2þ lnpTðnÞ� ¼ 0 yields the dominant
number of divisions

nc ¼ T=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hτi2 − 2 lnð2Þσ2τ

ð1 − cÞ2

s
: ð5Þ

Note that in the limit where σ2τ → 0, we find nc ¼ T=hτi,
which is the number of divisions corresponding to the
average generation time. Substituting the dominant value of
n from Eq. (5) into Eq. (3) gives us the formula for the bulk
population growth rate: Λ ¼ nclnð2Þ=T þ lnpTðncÞ=T.
After some simplification, we obtain

Λ ¼ 2 lnð2Þ=hτi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2 lnð2Þ σ2τ

hτi2
1þc
1−c

q ; ð6Þ

which is in agreement with previous computations using an
alternative approach [2]. From Eq. (6), we can see how the
three model parameters—namely the average generation
time hτi, the variance in generation times σ2τ , and the
mother-daughter correlations c—affect the population
growth. In particular, growth is increased when σ2τ and c
are increased, while increasing hτi decreases growth. In
Fig. 2, we compare Eq. (6) to the result of the lineage
algorithm. We see that the two approaches to computing the
population growth rate agree, illustrating that, given
enough data, the lineage representation accurately predicts
the population growth rate and captures the dependence on
the model parameters, such as the mother-daughter corre-
lations. This is true for any model of exponential growth,
not only the Langevin model (see the Supplemental
Material [24] where we have applied the algorithm to a
different model).
Large deviation principle.—In order to connect the

observation of the previous section to large deviation
theory, we introduce the time averaged division rate
γ ¼ n=T, so that the distribution of division rates given
by Eq. (4) can be expressed as

pTðγÞ ∝ e−TIðγÞ; ð7Þ

with

IðγÞ ¼ γð1 − cÞ2
2σ2τ

ðτ0 − 1=γÞ2: ð8Þ

The exponential dependence of pTðγÞ on T is known as a
large deviation principle and suggests that for large T
averages over pTðγÞ are dominated by a single value of γ
[30]. For the remainder of this Letter, we will assume this
large deviation principle is satisfied. IðγÞ is known as the
large deviation rate function and encodes all the informa-
tion about the model details. For example, in the case of the
random generation time model, Eq. (8) tells us that this
function flattens as c approaches 1. It is convenient to work
with the large deviation rate function because it is not
model specific; while different forms of cell-to-cell vari-
ability (e.g., variability in generation times or growth rates)
or correlations between mother and daughter cells can have
model-dependent effects on the population growth rate,
statements about how the large deviation rate function
affect population growth are universal. In order to express
the population growth rate in terms of IðγÞ, we can make a
saddle point approximation to the average in equation (3)
(see the Supplemental Material [24]), leading to the
variational formula

Λ ¼ max
γ

½γ ln 2 − IðγÞ�: ð9Þ

This formula reflects a trade-off between larger values of γ
leading to an exponentially larger progeny (as captured by
γ ln 2) while also being rare in the population (as captured
by the large deviation rate function). For the random

[ ]
[ ]

FIG. 2. Comparison of the analytical formula for the population
growth rate [Eq. (6)] shown as solid lines with the lineage
representation as a function of the mother-daughter correlations
shown as open circles, c. Simulations were carried out by
drawing the generation times of each daughter cell from a normal
distribution with mean τ0ð1 − cÞ þ τ0c and variance σ2ξ . The
parameters were τ0 ¼ 1, and σ2τ ¼ 0.2, 0.15, and 0.1 with
σ2τ ¼ σ2ξ=ð1 − c2Þ. Error bars are smaller than the symbols.
Desired accuracy was achieved with M ¼ 103–106 lineages
and T ¼ 103 time duration.
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generation time model, carrying out the maximization to
obtain the optimal γ in Eq. (9) is equivalent to computing
Eq. (5).
In Supplemental Material [24], we show that when

I00ðhγipÞ ≫ 1 we can make a Gaussian approximation of
pTðγÞ to obtain

Λ ≈
lnð2Þ
hτi þ T lnð2Þ2σ2γ

2
; ð10Þ

with σ2γ ¼ 1=TI00ðhγipÞ. The quantity I00ðhγipÞ plays an
important role in determining our ability to estimate Λ from
real data, but first, we illustrate how the approximation of
Eq. (10) relates to the model parameters of the random
generation time model. Combining Eqs. (10) and (8) yields

Λ ≈
lnð2Þ
hτi þ lnð2Þ2

2

σ2τ
ð1 − cÞ2hτi3 : ð11Þ

This is equal to the exact growth rate given in Eq. (6) up to
terms of order σ2c. If there is either a large amount of
variability or strong mother-daughter correlations, the large
deviation rate function becomes flatter and its behavior
away from hγip becomes relevant.
Convergence of lineage representation.—We now

address the question: how accurately can we estimate Λ
given M lineages with durations T? To quantify the accu-
racy of an estimate of Λ, denoted Λ̂lin, we use the averaged
squared deviation

errðΛ̂linÞ2 ¼ hððΛ̂=Λ − 1Þ2iE : ð12Þ

Here, the average h·iE represents the average over many
realizations of the ensemble of M lineages of duration T,
not to be confused with the averages elsewhere that are
taken over the lineage representation. Two distinct factors
contribute to the error: first, the estimate ofΛ obtained from
the lineage representation will be subject to a systematic
error resulting from the fact that given an infinite number of
lineages each with a finite duration T, the lineage repre-
sentation produces the arithmetic mean fitness at time T:
ΛT;a ¼ 1=T lnhNi (this is distinct from Λ; see the
Supplemental Material [24] and Ref. [25]). We refer to
this error as finite duration error, and as we have shown in
the Supplemental Material [24], it will scale inversely
with T.
The second factor contributing to errðΛ̂Þ is sampling

error in the approximation of the average h2nip from a finite
number of lineages. As shown in the Supplemental
Material [24], when

1

h2nip

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð2nÞ

M

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T lnð2Þ=I00ðhγipÞ − 1

M

s
≪ 1; ð13Þ

the contribution of the sampling error to errðΛ̂linÞwill grow
exponentially in T for any fixed M. Eventually the
sampling error will dominate the error resulting from finite
lineage durations.
As T becomes large, the distribution of γ becomes much

more narrow, so an ever-increasing number of lineages are
needed to sample the variation in γ. In the long-time limit,
all information about the variation is lost for finite M and
the lineage representation simply retrieves the zeroth-order
term in Eq. (10):

lim
T→∞

Λ̂lin ¼ lnð2Þhγip: ð14Þ

This demonstrates that the T andM limits do not commute.
As a result, there is a “Goldilocks effect”: if T is too small
the estimate will be inaccurate due to the finite duration
error, while if T is too large we encounter the limit given by
Eq. (14). The best estimate is in fact obtained by using an
intermediate T where both effects are minimized.
This prediction is validated numerically for the Langevin
model in Fig. 3. We have also generated the same data for a
more biophysically realistic model of cell growth
(the cell-size regulation model [19]), and found the
results are qualitatively similar (see the Supplemental
Material [24]).
How much data do we need to be confident we are not

encountering the limit given by Eq. (14)? The sampling
error will have a negligible effect on the estimate when
Eq. (13) is satisfied. This condition can be rewritten as
M ≫ 2T lnð2Þ=I00ðhγipÞ. This implies that the number of line-
ages needed to avoid encountering the sampling error
grows exponentially with the duration of the lineages
and the generation time variance. In order to be confident
that the finite duration error is small enough to resolve
the second term in Eq. (10), we must select T ≫ I00ðγcÞ.
This means that T=I00ðhγipÞ is necessarily a large quantity.
For example, if we want to ensure that the finite dura-
tion error is an order of magnitude smaller than the
generation time variance, a conservative choice of M will
be much larger than 210×lnð2Þ ≈ 120. However, in Fig. 3, we
see that using only M ¼ 80 lineages and T ¼ 120

generations gives an error of errðΛ̂Þ2 ≈ 2 × 10−5. In this
case ½lnð2Þ=hτi − Λ�=Λ − 1 ≈ 2 × 10−2, so the lineage
algorithm already performs much better than the naive
estimate. In the Supplemental Material [24], we have
explored the applications of the lineage algorithm to mother
machine data, where we have found that the dependence of
Λ̂lin on T is qualitatively consistent with the theory
presented above.
Discussion.—Experimental advances over the last few

decades have made it possible to observe the stochastic
dynamics of growth and division in bacteria with increasing
levels of precision [19–21,31–37]. These observations
have revealed universal principles underlying microbial
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growth. Bulk experiments in which bacteria are grown
exponentially or in competition assays can be used to
compare the fitness of different strains, and in principle
elucidate how these physiological differences map to fit-
ness. However, the equivalence between growth in bulk
experiments and those used to observe single-cell traits
remains unclear.
We have presented a lineage representation that links

single-lineages to fitness by leveraging the large deviation
structure of microbial population growth. This idea is
reminiscent to the optimal lineage principle introduced
by Wakamoto et al. which was used to calculate the
population growth rate within the context of a model with
uncorrelated generation times [22]. We have quantified
exactly how much data is needed to resolve the effects of
cell-to-cell variability on population growth from single
lineages. We expect that this work will serve as a guide for
future experimental studies seeking to link single-cell
observations to fitness.

The code to generate Figs. 2 and 3 can be downloaded
at [38].
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