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High order perturbation theory has seen an unexpected recent revival for controlled calculations of
quantum many-body systems, even at strong coupling. We adapt integration methods using
low-discrepancy sequences to this problem. They greatly outperform state-of-the-art diagrammatic
Monte Carlo simulations. In practical applications, we show speed-ups of several orders of magnitude
with scaling as fast as 1=N in sample number N; parametrically faster than 1=

ffiffiffiffi
N

p
in Monte Carlo

simulations. We illustrate our technique with a solution of the Kondo ridge in quantum dots, where it allows
large parameter sweeps.
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The exponential complexity of quantum many-body
systems is at the heart of many remarkable phenomena.
Advances in correlated materials and recently developed
synthetic quantum systems—e.g., atomic gases [1], trapped
ions [2], and nanoelectronic devices [3–6]—have allowed
many-body states to be characterized and controlled with
unprecedented precision. The latest of these systems,
quantum computing chips, are highly engineered out-of-
equilibrium many-body systems, where the interacting
dynamics performs computational tasks [7]. However,
our understanding of these many-body systems is limited
by their intrinsic complexity. While uncontrolled approx-
imations can give insight into possible behaviors, there is a
growing effort to develop controlled, high-precision
methods [8], especially ones that apply far from equilib-
rium [9–11]. These allow us to make quantitative predic-
tions about the physics of many-body systems and to
uncover qualitatively new effects at strong coupling.
Among theoretical approaches, perturbative expansions

in the interaction strength have seen an unexpected recent
revival, in particular using a family of “diagrammatic”
quantum Monte Carlo methods (DiagQMC) [10–21].
Using various techniques [11,12,18,21], it is now possible
to sum perturbative series beyond their radius of conver-
gence and thus access strongly correlated regimes. The
effects of strong interactions have been studied in diverse
systems, including unitary quantum gases [15], polarons
[12], quantum dots [10,11,19], and pseudogap metals [16].
DiagQMC is currently the preferred strategy for com-

puting series coefficients at large perturbation order n, as
this involves integrals of dimension proportional to n
(practically around 5–30). High dimensional integration
is notoriously difficult, and Monte Carlo simulations

provide a robust and flexible solution with errors that scale
as 1=

ffiffiffiffi
N

p
independently of the dimension; here N is the

number of sample points.
Nonetheless, there has been tremendous progress in

integration methods for problems that lie in between
traditional quadrature (very low dimensions) and
Monte Carlo methods (high dimensions). In intermediate
dimensions (typically 5–200), “quasi-Monte Carlo”
methods have become well established. These sample
the integrand in a deterministic and structured way that
ensures improved uniformity and better convergence rates.
In favorable cases they can achieve error scalings of 1=N or
even 1=N2, far outperforming traditional Monte Carlo
methods [22–25].
In this Letter we show how to apply these integration

techniques to perturbative expansions for quantum many-
body systems. Our “quantum quasi-Monte Carlo” method
(QQMC) is broadly applicable. It can be formulated for
both equilibrium and nonequilibrium cases and extended to
various lattices and dimensions. Here we demonstrate it on
a quantum dot model and show computational acceler-
ations of several orders of magnitude compared to state-of-
the-art DiagQMC [10,11] (Fig. 1). A crucial ingredient of
the QQMC is the warping of the integral. This is a
multidimensional change of variables constructed from a
model function that approximates the integrand. We show
that a simple model already yields remarkable results and
propose directions for future optimizations. We demon-
strate convergence as fast as 1=N in a high-precision
benchmark against an exact Bethe ansatz solution, to order
n ¼ 12. To illustrate the power of QQMC methods, we
calculate the finite-bias current through a quantum dot in
the Kondo regime, sweeping electrostatic gating and
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interaction strength as parameters. This experimentally
relevant calculation was computationally unfeasible for
previous techniques.
Formalism.—In perturbative calculations, an observable

FðUÞ such as a current or susceptibility is expressed as a
power series in the interaction U:

FðUÞ ¼
X∞
n¼0

FnUn; ð1Þ

where the coefficients Fn are n-dimensional integrals

Fn ¼
Z

dnu fnðu1; u2;…; unÞ: ð2Þ

The integrands fnðuÞ are time-ordered correlators
expressed in terms of 2n determinants (Wick’s theorem),
in both Schwinger-Keldysh [10] and Matsubara formalisms
[17]. The exponential complexity of evaluating fnðuÞ leads
us to seek fast integration methods. Here the ui specify the
locations of interaction vertices in space and time. We
present the formalism generally and will specialize to a
concrete application later.
We will perform the integral Eq. (2) by direct sampling

using quasi-Monte Carlo simulations. The crucial step is to
warp the integral, i.e., to make a change of variables uðxÞ
that maps the hypercube x ∈ ½0; 1�n onto the u domain. The
integral Eq. (2) becomes

Fn ¼
Z
½0;1�n

dnx fn½uðxÞ�
���� ∂u∂x

����; ð3Þ

where j∂u=∂xj is the associated Jacobian.

The most important property of the warping is to make
the function f̄nðxÞ ¼ fn½uðxÞ�j∂u=∂xj as smooth as pos-
sible in the new variables x. If fn were positive, the perfect
change of variables would make f̄n constant and thus trivial
to integrate with a single sample. That would be tantamount
to ideal sampling from the distribution fnðuÞ and it is as
challenging as the original integration. Instead, a judicious
warping must provide sufficient smoothing while remain-
ing efficiently computable.
Mathematically, convergence theorems can only be

established for f̄nðxÞ that belong to specific smooth
function spaces, or whose Fourier coefficients have rapid
asymptotic decay properties [22,24]. Although we cannot
prove that our warped integrands satisfy assumptions of
this kind, in practice we find that the change of variables are
good enough to provide excellent error scaling.
To warp the integral, we consider a positive model

function pnðuÞ, which should be viewed as an approxi-
mation of jfnj. The inverse change of variables xðuÞ is then
defined by (for 1 ≤ m ≤ n),

xmðu0m; umþ1;…; unÞ ¼
R u0m
0 dum

R
∞
0

Q
m−1
i¼1 duipnðuÞR∞

0 dum
R∞
0

Q
m−1
i¼1 duipnðuÞ

:

ð4Þ
Here we adopt a case where ui is defined on the interval
½0;∞Þ. Since xmðuÞ only depends on um;…; un,
the Jacobian is j∂u=∂xj ¼ ½R dupnðuÞ�=pnðuÞ (see
Ref. [26]). In quasi-Monte Carlo simulations, the integral
Eq. (3) is approximated by a sum over the firstN points of a
low-discrepancy sequence x̄i. This is a deterministic
sequence of points with specific properties that uniformly
samples the hypercube [22,24]. We have

Fn ≈ FnðNÞ ¼ C
N

XN
i¼0

fn½uðx̄iÞ�
pn½uðx̄iÞ�

; ð5Þ

where C ¼ R
dupnðuÞ is a constant. Here we use a Sobol’

sequence [47,48] to obtain x̄i.
The model function pnðuÞ should have two key proper-

ties. First, it should approximate jfnðuÞj well. Second, its
form should be simple enough for the partial integrals
Eq. (4) to be evaluated exactly and quickly. This allows the
reciprocal function uðxÞ to be computed by first inverting
the one-dimensional function xnðunÞ, then inverting
xn−1ðun; un−1Þ for fixed un, and so on [26].
Many classes of model functions are possible, as dis-

cussed later. This Letter applies the method to impurity
models, using a real-time Schwinger-Keldysh formalism, in
which the ui are the times of the interaction vertices. We
consider the simple form

pnðuÞ ¼
Yn
i¼1

hðiÞðui−1 − uiÞ; ð6Þ

FIG. 1. Comparison of the convergence rates for QQMC and
DiagQMC. Here QnðNÞ is the expansion coefficient of the
occupation number of the Anderson impurity model at order n
as a function of the number of integrand evaluations N. Each
result is normalized to the exact analytic result QBethe

n .
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with 0 < un < un−1 < … < u1 < u0. Here u0 ¼ t is
defined to be the measurement time and the hðiÞ are positive
scalar functions. (They may depend on n, but we omit this
index). The factored structure allows Eq. (4) to be inverted
rapidly [26].
Anderson impurity.—We illustrate our method on the

Anderson impurity model coupled to two leads. This is the
canonical model for a quantum dot with Coulomb repulsion
and the associated Kondo effect. It has been realized in
many nanoelectronic experiments [3–6]. Importantly, some
quantities including the electron occupation on the dot Q
can be computed analytically in the universal limit with the
Bethe ansatz [49,50]. This provides us with a high-
precision benchmark for QQMC at any perturbation
order n.
We consider an infinite one-dimensional chain with the

impurity at site i ¼ 0. The noninteracting Hamiltonian
is H0 ¼

P
i;σðγic†i;σciþ1;σ þ H:c:Þ þ εd

P
σ c

†
0σc0σ, where

σ ¼ ↑;↓ is the electronic spin and εd represents a capacitive
gate coupled to the dot. The local Coulomb repulsion is
Hint ¼ Uc†0↑c0↑c

†
0↓c0↓. The electron tunneling between the

leads and dot is γ0 ¼ γ−1 ¼ γ. All other γi ¼ D=2, corre-
sponding to hopping within the leads; the lead half-bandwidth
D is a constant. We perform the perturbative expansion in
powers of U [26].
Benchmark.—To validate the QQMC method, we con-

sider the special case solved by the Bethe ansatz. For this,
we set temperature T ¼ 0, capacitive gate εd ¼ 0, and half-
bandwidth D → þ∞ such that Γ ¼ 4γ2=D ¼ 1 is the unit
of energy. The measurement time t ¼ 30=Γ is sufficiently
long that the system reaches steady state. We compute
the expansion of the occupation number QðUÞ ¼
hc†0↑c0↑ þ c†0↓c0↓i. The system is particle-hole symmetric
for εd ¼ −U=2 so the non-interacting case is Q0 ¼ 1.
For higher-order Qn, particle-hole symmetry is broken,
but the expansion stays in the symmetric regime
ðU þ 2εdÞ ≪

ffiffiffiffiffiffiffi
UΓ

p
[49].

Figure 2 shows the relative error between QnðNÞ using
QQMC and the exact result QBethe

n [26], as a function of the
number of integrand evaluations N. Following an initial
transient, we enter an asymptotic regime in which there is
rapid convergence: for n ¼ 4 this is consistent with pure
1=N while for n ¼ 8, 12 it is 1=Nδ with δ ≃ 0.9, 0.8. These
calculations used the product model function Eq. (6) with a
single exponential hðiÞðviÞ ¼ expð−vi=τÞ, where τ ¼ 0.95.
The same setup was used in Fig. 1. The level of precision
that we obtained revealed limitations in the conventional
evaluation of the noninteracting Green functions, which
warranted special consideration [26].
It is expected that the convergence rate gradually slows

as n increases. First, the quality of the warping decreases as
the disparity between the increasingly severe requirements
of convergence theory and the behavior of our integrands
grows. This can be mitigated by constructing more expres-
sive model functions, which we discuss below. Second, for

larger n the integrands generally become more oscillatory.
The model functions Eq. (4) were not designed to handle
cases with massive cancellation, and this may become a
limiting factor. We will see this effect below for calcu-
lations with εd=U > 0.5, although in practice enough
orders can be computed accurately to obtain the desired
physical results [26].
In quasi-Monte Carlo methods, a standard technique to

estimate errors is to perform computations using Eq. (5)
with several “randomized” low-discrepancy sequences
[22–25] and we use this method below [26].
Having made these technical points, let us reiterate the

lessons of Figs. 1 and 2: (i) QQMC provide a dramatic
speed-up with better asymptotic error scaling than
DiagQMC; (ii) the speed-up persists to at least order
n ¼ 12, which is what is needed for practical applications.
Coulomb diamond.—We now apply QQMC to solve a

topical physics problem. We explore the current-voltage
characteristic IðVÞ across the quantum dot for finite bias
and varying U. Since quantum dots are considered prom-
ising platforms for building qubit systems, it is of primary
importance to understand how many-body effects influence
their properties, especially the phase coherence.
Quantum dots can be in three different experimentally

accessible regimes [51–54]: Fabry-Pérot (small U), Kondo
(intermediate U), and Coulomb blockade (large U). The
Fabry-Pérot and Coulomb blockade limits are well
described by, respectively, noninteracting and semiclassical
theories; the out-of-equilibrium Kondo regime is more
challenging. Two controlled approaches have recently
appeared, but both are too slow for some applications:

FIG. 2. Expansion coefficients Qn for the Anderson impurity
occupation number relative to the analytic result QBethe

n . QQMC
methods converge at rates close to 1=N with the number of
integrand evaluations N. For visibility, the data have been
smoothed (see Supplemental Material [26]). The black lines
indicate exact 1=N (dotted) and 1=

ffiffiffiffi
N

p
(dashed) convergence.

Each run was performed with one Sobol’ sequence. Inset:
Cartoon of quantum dot setup.
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the Schwinger-Keldysh DiagQMC used in Figs. 1 and 4
[10,11] and the real-time inchworm algorithm [9,55,56].
QQMC provide the speed and precision to allow large
parameter sweeps, which is mandatory to make good
contact with experiments. In Ref. [11], some of us studied
the Kondo ridge close to εd ¼ −U=2. QQMC allow us to
present results scanning the entire ðU; εdÞ phase diagram,
including slowly converging regions with even numbers of
electrons or near the degeneracy points.
Figure 3 (inset) shows a cartoon of the differential

conductance for varying ðεd; VÞ as predicted by
Coulomb blockade theory [57] and seen experimentally
at low temperatures and large U [58]. At small bias, the
Coulomb blockade forbids current flows except at two
special points: εd ¼ 0, where the dot energies for Q ¼ 0
and Q ¼ 1 electrons are degenerate, and εd ¼ −U (like-
wise for Q ¼ 1, 2). At intermediate U, the Kondo effect
changes this picture drastically: the zero-bias Kondo
resonance forms in the “forbidden” region of odd Q and
enables current flow.
Figure 3 shows the current I versus gate voltage εd for

V ¼ U=7 and temperature T ¼ 0. We choose a finite half-
bandwidth D=Γ ¼ 20 [26]. Sweeping the interaction U=Γ
shows several regimes. For U=Γ ¼ 1.75, 3.5 a current
plateau emerges in the local moment regime (Q ¼ 1) due to
Kondo resonance formation. The current develops new
local maxima seen for U=Γ ¼ 5.25, 6.00. These grow
toward the Coulomb blockade limit at larger U (black

lines); at the same time, current around εd=U ¼ −0.5
reaches a maximum and decreases. This is a competition
between resonance formation and narrowing. At small U,
the Kondo temperature TK is much larger than the bias V
and we are in the linear response regime. In this regime near
εd ¼ −U=2we approach perfect transmission I ¼ V=π; see
Ref. [11]. At larger U ≳ 4Γ, TK decreases exponentially
with U and become smaller than V, leaving the linear
response regime. Throughout, as U increases, the already-
small current in the side regions (Q ¼ 0, 2) is increasingly
suppressed.
Model function.—Let us reexamine the importance of

integral warping and model functions. Figure 4 shows the
convergence of Q8ðNÞ using different integration methods;
the parameters are identical to Fig. 2. When the integral is
evaluated using Sobol’ points without warping (“Sobol’
only”) the convergence is poor, showing that naively
applying low-discrepancy sequences provides little benefit
for these integrands. Next, contrast regular DiagQMC
methods with the warped integrand using pseudorandom
numbers. As expected for pure Monte Carlo approaches,
both show 1=

ffiffiffiffi
N

p
convergence. Nonetheless, sampling the

warped integrand still converges faster than the DiagQMC,
despite the fact that the latter uses importance sampling via
the Metropolis algorithm. As anticipated, QQMC using
Sobol’ points and the model function Eq. (6) based on
exponential hðiÞ converge even more rapidly.
How can the model function Eq. (6) with simple hðiÞ

provide such dramatic convergence improvements? Our

FIG. 3. Current at finite-bias voltage through the Anderson
impurity at T ¼ 0, sweeping through several interaction regimes.
Each point is a different QQMC calculation up to order n ¼ 10,
including series resummation [11]. The error bars are a combi-
nation of integration error and truncation error of the resumma-
tion; the latter dominates. By construction, the data are symmetric
with respect to the particle-hole symmetric point εd ¼ −U=2.
Inset: Coulomb diamond in the Coulomb blockade picture (large
U). Regions where current can flow are shaded gray. The dashed
line indicates the scan shown in the main plot (varying εd for
fixed V=U ¼ 1=7).

FIG. 4. Comparison of convergence ofQ8 for different methods
of integration: evaluating unwarped integrand with a Sobol’
sequence (cyan), DiagQMC (red), warped integral sampled with
Mersenne Twister pseudorandom numbers (green), or Sobol’
sequence (blue). For the warped cases, we used Eq. (6) with
hðiÞðviÞ ¼ expð−vi=τÞ; τ ¼ 0.95. After an initial warping with
exponential functions τ ¼ 1.1, we can apply an additional
warping obtained by projection (orange) [26]. For visibility,
the data (except Sobol’ and DiagQMC) have been smoothed in
the same way as in Fig. 2.
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integrands describe physical correlators that are highly
structured and have decaying exponential or power-law
tails [10,19,26]. The tail contributions become ever more
important as the dimension increases. The model function
properly describes the long-time asymptotics [26]. We also
emphasize the importance of a well-chosen coordinate
system in the model function: the differences of closest
times vi ¼ ui−1 − ui used to parametrize the hðiÞ.
Optimization of the model function should allow further

performance gains, particularly at higher orders n. One
possibility is to better adapt the functions hðiÞ to fn. To
illustrate this, we apply a second warping constructed by
sampling points from the first warping. These samples are
projected along the dimensions of v space and smoothed
[26]. As shown in Fig. 4, this optimization reduces the error
by a factor of ≃2. More importantly, it automatically gives
robust convergence without the need to manually optimize
the τ parameter [26].
Finally, other families of model functions exist beyond

Eq. (6), that provide versatile and expressive approxima-
tions while still allowing for fast inversion of Eq. (4). One
such family is matrix product states (MPS) or functional
tensor-trains [59,60], of which Eq. (6) is just the simplest
case:

pnðuÞ ¼ hð1Þa ðv1Þhð2Þab ðv2Þ � � � hðn−1Þcd ðvn−1ÞhðnÞd ðvnÞ: ð7Þ

Here, hðiÞab are matrices and repeated indices are summed.
Another promising family is pnðuÞ ¼

Q
n−1
i¼1 h̄

ðiÞðviþ1; viÞ.
Conclusion.—We have shown how to use sampling

techniques based on low-discrepancy sequences to com-
pute high orders of many-body perturbation theory.
Although we cannot show that the integrands obey the
assumptions of formal quasi-Monte Carlo convergence
theory, practical scaling as fast as 1=N is still achievable.
This success was possible due to the warping of the integral
based on a model function. Using benchmarks on exactly
solvable quantities in the Anderson impurity model, we
unambiguously validated the convergence of this quantum
quasi-Monte Carlo method at high precision. This calcu-
lation was about ∼104 times faster than the DiagQMC
equivalent.
We can apply the techniques established here to models

with interesting strongly correlated physics in all dimen-
sions, for equilibrium and especially nonequilibrium sit-
uations. For continuum models, the integrands are smooth
and warping should be particularly simple. For lattice
models, the discrete summation may degrade convergence,
although this may be addressed with sufficiently good
model functions. QQMC can also be applied to other
diagrammatic expansions, e.g., in hybridization [9].
Constructing more expressive model functions should
further increase speed and accuracy and is an ideal
application for recent machine learning techniques in
quantum systems.

Finally, we have shown in our calculations that the
simple model function Eq. (6) captures the behavior of
perturbation theory integrands in asymptotic large-coordi-
nate regions. This is not accidental, but reveals a simplify-
ing structure of the correlation functions arising from
Wick’s theorem that was not previously appreciated in
diagrammatic numerical simulations. For the real-time
Schwinger-Keldysh calculations, the contour index means
that the MPS structure Eq. (7) is the natural approximation
for generic many-body systems. It can be used as a starting
point to efficiently compute and integrate these functions,
even beyond the Monte Carlo or QQMC sampling dis-
cussed here.
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