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A fundamental concept in physics is the Fermi surface, the constant-energy surface in momentum space
encompassing all the occupied quantum states at absolute zero temperature. In 1960, Luttinger postulated
that the area enclosed by the Fermi surface should remain unaffected even when electron-electron
interaction is turned on, so long as the interaction does not cause a phase transition. Understanding what
determines the Fermi surface size is a crucial and yet unsolved problem in strongly interacting systems such
as high-Tc superconductors. Here we present a precise test of the Luttinger theorem for a two-dimensional
Fermi liquid system where the exotic quasiparticles themselves emerge from the strong interaction, namely,
for the Fermi sea of composite fermions (CFs). Via direct, geometric resonance measurements of the CFs’
Fermi wave vector down to very low electron densities, we show that the Luttinger theorem is obeyed over
a significant range of interaction strengths, in the sense that the Fermi sea area is determined by the density
of the minority carriers in the lowest Landau level. Our data also address the ongoing debates on whether or
not CFs obey particle-hole symmetry, and if they are Dirac particles. We find that particle-hole symmetry is
obeyed, but the measured Fermi sea area differs quantitatively from that predicted by the Dirac model
for CFs.
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Composite fermions (CFs) are emergent quasiparticles of
a strongly interacting, two-dimensional electron system
(2DES) at high perpendicular magnetic fields when the
electrons’ kinetic energy is quenched into a set of quantized
energy levels, the so-called Landau levels (LLs) [1–3]. In
the lowest LL, the electrons have no kinetic energy and the
system is a prime example of a flat band system where
interaction dominates the physics. When the lowest LL is
half-filled, i.e., the LL filling factor (ν) equals 1=2, the
interacting electrons each pair with an even number of flux
quanta and form flux-electron CFs that condense into a
metallic phase with a well-defined Fermi sea [Fig. 1(a)]
[1–3]. Thus the CF Fermi sea is born out of strong
interaction within a flatband system, and provides an ideal
platform to test the Luttinger theorem [4], a major theorem
in many-body physics that postulates that the Fermi sea and
its area should be resilient against interaction. Here we
investigate the validity of the Luttinger theorem and its link
[5,6] to particle-hole symmetry [Fig. 1(b)], in a nearly half-
filled, flatband system of interacting CFs.
According to the CF theory [1–3], the flux-electron CFs

ignore the large, external magnetic field (B) and only
experience an effective magnetic field B� ¼ B − Bν¼1=2,
where Bν¼1=2 is the field at ν ¼ 1=2, ν ¼ hn=eB is the LL
filling factor, and n is the 2DES density. Near ν ¼ 1=2 CFs
execute cyclotron motion in a small B�, similarly to their
electron counterparts near B ¼ 0 [2,3,7–11]. This

phenomenon enables us to directly probe the CF Fermi
sea via direct measurements of the CF Fermi wave vector.
We use a geometric resonance (GR) technique on very high
mobility 2DESs, confined to modulation-doped GaAs/
AlGaAs heterostructures, and with an imposed, small,
periodic density modulation [Fig. 2(a); see Supplemental
Material [12] for details]. The working principle of
GR is straightforward and requires no fitting parameters.
The CFs’ cyclotron orbit in a small B� has radius
R�
c ¼ ℏk�F=eB

�, the size of which is determined by the
magnitude of the CFs’ Fermi wave vector, k�F [2,3,7–11]. If
the CFs have a long mean-free-path so they can complete a
cyclotron orbit without scattering, then a GR occurs when
the orbit diameter becomes commensurate with the period
(a) of the density modulation [Fig. 2(a)]. Quantitatively, it
is generally assumed that, when 2R�

c=a ¼ iþ 1=4
(i ¼ 1; 2; 3;…), GRs manifest as minima in magneto-
resistance at [9–11]:

B�
i ¼ 2ℏk�F=eaðiþ 1=4Þ: ð1Þ

Thus, k�F can be deduced directly from the positions of B�
i .

Figure 2(b) highlights our representative magnetoresist-
ance traces over a wide range of n, each exhibiting well-
developed GR features (marked by arrows), flanking a
deep, V-shaped minimum at ν ¼ 1=2. The traces attest to
the high sample quality as evidenced by the emergence of
fractional quantumHall states, such as those at ν ¼ 1=3 and
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2=3, even at very low n. In Fig. 2(c), we zoom in close to
ν ¼ 1=2. There is a pronounced asymmetry in the exper-
imental GR data with respect to the field position of
ν ¼ 1=2: jB�j for the GR minimum on the B� > 0 side

is larger than on the B� < 0 side. Figure 2(d) shows the
same data as in Fig. 2(c), now plotted as a function of ν. The
observed GR minima positions are also asymmetric
in ν positions with respect to ν ¼ 1=2. The observed
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FIG. 2. Overview of our GR technique and magnetotransport data. (a) Our experimental technique consists of patterning a one-
dimensional superlattice (shown in blue) on the sample surface to induce a small, periodic density perturbation of period a in the 2DES.
A representative scanning electron micrograph shown on the right attests to the uniformity of the stripes. When the cyclotron orbit of the
CFs becomes commensurate with a, the i ¼ 1 GR occurs. (b) Magnetoresistance traces over a wide range of 2DES densities n, taken at
T ¼ 0.30 K, plotted against 1=ν, showing pronounced GR resistance minima on the flanks of ν ¼ 1=2 (vertical arrows), even at very
low n. The values of n (in units of 1010 cm−2) are given for each trace. (c)–(d) Expanded view of CF GR features, plotted against B� and
ν. The observed GR minima positions exhibit clear asymmetry with respect to ν ¼ 1=2 (B� ¼ 0). Vertical (dash-dotted) blue, (solid) red,
and (dashed) green lines mark the expected positions for the i ¼ 1 GR for fully spin-polarized CFs according to the fixed density model,
minority-carrier model, and Dirac theory, respectively; see text for a description of the models. The blue lines in (c) are exactly
symmetric in their positions with respect to B� ¼ 0. Also, the blue and red lines coincide for ν < 1=2 (B� > 0). The experimental data
best match the predictions of the minority-carrier model (red vertical lines). The differences between the observed minima positions and
the predictions of the fixed density model and Dirac theory are also clearly visible.
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FIG. 1. (a) Top panels: Electrons (at B ¼ 0) and CFs (at ν ¼ 1=2) in real space. Bottom panels: Fermi seas of electrons and CFs at
n ¼ 3.20 × 1010 cm−2, and their respective Fermi wave vectors (kF and k�F), in reciprocal space. (b) The lowest LL at ν ¼ 1=2 and its
evolution away from ν ¼ 1=2 at a fixed density (n ¼ 3.20 × 1010 cm−2) and varying magnetic field. The shaded regions denote the
occupation of the lowest LL by electrons (blue) and holes (yellow). Our experimental data show that, out of the cases (i) to (iii) as
described in the text, the CF Fermi sea area is determined by the density of minority carriers [case (ii)], namely, by electrons (nmin ¼ n)
for ν < 1=2 and by holes [nmin ¼ nð1 − νÞ=ν] for ν > 1=2, regardless of the interaction.
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asymmetries are consistent with the data of Kamburov et al.
[11] which were taken at higher n (> 12 × 1010 cm−2).
The data of Figs. 2(c) allow us to directly measure, from

the magnetic field positions of the observed GR minima
and using Eq. (1) (with i ¼ 1), the CFs’ Fermi wave vector
over a large density range, as shown in Fig. 3. We can then
address certain fundamental questions: What determines
the CF density, Fermi wave vector, and Fermi sea area?
What are the implications for the Luttinger theorem and
particle-hole symmetry near ν ¼ 1=2? These questions
have triggered enormous theoretical interest [16–35]. For
the first question, three plausible answers are [36] [see
Fig. 1(b)] (i) It is determined simply by the density of
electrons n, i.e., the density of CFs (n�) is fixed and equals
n, and thereby k�F ¼ ð4πnÞ1=2. (ii) It is the minority carriers

in the lowest LL that determine k�F, namely, n� ¼ nmin; this
means k�F ¼ ð4πnminÞ1=2, where nmin ¼ n for ν < 1=2, and
nmin ¼ nð1 − νÞ=ν (i.e., the density of holes in the lowest
LL) for ν > 1=2. This was the conclusion reached in
experiments of Ref. [11] and in the subsequent numerical
calculations of Refs. [20,21]. (iii) It is equal to half
the number of flux quanta penetrating the sample,
i.e., n� ¼ B=ð2h=eÞ, if the CFs are Dirac fermions
[18,26,29,30,34,35]. This Dirac CF theory predicts a
change in CF density with magnetic field and renders
k�F ¼ l−1B ¼ ð4πnÞ1=2 × ðBi¼1=Bν¼1=2Þ1=2, where lB ¼
ðℏ=eBÞ1=2 is the magnetic length [37]. In addition to the
built-in particle-hole symmetry [18], the Dirac CF theory
entails a single Dirac cone, as opposed to multiple Dirac
cones that are present in 2DESs such as graphene,
and might point to a deep relationship between the CF
liquid and the three-dimensional topological insulators
[19,22,23]. Besides testing the validity of the Luttinger
theorem and particle-hole symmetry, one goal of our
work is to differentiate between the three possibilities
(i)–(iii) using the new experimental data.
First, we address the question of what determines the

CF Fermi sea area and whether this area is independent
of the inter-CF interaction, just as Luttinger predicted. In
Fig. 3 we show the CFs’ k�F predicted by the models (i)–
(iii). It is clear in Fig. 3 that the minority-carrier model
best fits the experimental data throughout our density
range. This is similar to the single-particle picture, e.g., in
doped semiconductors: In n-doped systems, the area of
the Fermi sea is determined by the density of electrons in
the conduction band while in p-doped systems, where the
valence band is almost full, the Fermi sea area is
determined by the density of the empty states in the
valence band, i.e., “holes,” rather than electrons.
Remarkably, k�F and therefore the area of the CF
Fermi sea follows the same simple rule.
Furthermore, the Luttinger theorem postulates that the

Fermi sea area should be independent of the interaction
between the fermions. Our low-density data provide very
important verification here. Even though the nonperturba-
tive part of the electron-electron interaction is already
used in making the CFs, the residual interaction between
the CFs increases substantially in the low-density regime
thanks to the increased mixing between the LLs [2,39].
This effect can be quantified by the LL mixing (LLM)
parameter κ ¼ ECoul=ECyc, defined as the ratio of the
Coulomb energy (ECoul ¼ e2=4πεlB) to the cyclotron
energy (ECyc ¼ ℏeB=m�). Note that κ, whose values are
indicated on the top axes of Fig. 3 plots, goes as n−1=2 at a
fixed ν. The LLM and the resulting interaction between the
CFs affect the CF ground state significantly. They can lead,
e.g., to a transition to a CF Wigner crystal [40]. However,
the data of Fig. 3 show that k�F, which determines the
area of the CF Fermi sea, follows the same expression
k�F ¼ ð4πnminÞ1=2 over a large range of electron density and
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FIG. 3. CF Fermi wave vectors determined from the measured
GR minima plotted against density n. The symbols represent
experimental data from samples with modulation periods
a ¼ 190 nm (solid squares), a ¼ 200 nm (open squares), and
225 nm (open triangles), respectively. Blue, red, and green
curves represent the calculated k�F based on k�F ¼ ð4πnÞ1=2,
k�F ¼ ð4πnminÞ1=2, and Dirac theory, respectively. For each
model, the results of calculations are shown in different ranges
of a where the experimental data were taken. For a description of
the multiple curves for the Dirac theory and minority-carrier
model, see Ref. [38]. The experimental data match the minority-
carrier expression (red curves) very well. The top axes give the
LL mixing parameter κ.
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LLM, making a convincing case that the Luttinger theorem
is obeyed in a strongly interacting system.
Next, we discuss the asymmetries observed in Figs. 2(c),

2(d) and Fig. 3 with respect to ν ¼ 1=2. These are puzzling
at first sight, and might imply a breakdown of particle-hole
symmetry. The question of whether or not the CFs obey the
particle-hole symmetry has in fact sparked exciting new
developments in the field of strongly interacting electron
systems [16–35,41]. These theories mostly predict that the
particle-hole symmetry should hold within the lowest LL,
while Balram et al. [20] conclude that it could be broken
when LLM is significant.
In theory, particle-hole symmetry about ν ¼ 1=2 implies

the equivalency of ν ↔ ð1 − νÞ at a fixed B. However, in
our experiments where we vary B while keeping n fixed,
the i ¼ 1 GR minima for ν > 1=2 and ν < 1=2 are
observed at two different absolute values of B� (and
therefore lB). As a result, for a sample with a fixed a
and n, the relevant parameter a=lB is different at ν and
(1 − ν). This can be accounted for by plotting the data as a
function of a=lB. Figure 4 illustrates such plots where ν at
which the GR occurs (νGR), taken directly from the
experimental traces, are shown against a=lB (we show B�

i¼1

and k�F vs a=lB plots in the Supplemental Material [12]).
Remarkably, the experimental GR data, when plotted in this
fashion, are symmetric with respect to ν ¼ 1=2 in the entire
density range, within the experimental accuracy. This leads
us to a very important conclusion: The GR data are
consistent with particle-hole symmetry about ν ¼ 1=2,
even at small n (small a=lB), where the LLM and the
inter-CF interaction are significant. The asymmetry in νGR
with respect to ν ¼ 1=2 [Fig. 2(d)] does not imply that
particle-hole symmetry is broken; the apparent asymmetry
emerges only because, in a given experiment at a fixed
density, the parameter a=lB is not identical at ν and (1 − ν).
Interestingly, the particle-hole symmetry in Fig. 4 data

can be easily understood from the same expression k�F ¼
ð4πnminÞ1=2 that we find to be a good representation of
Fig. 3 data. This expression can be written as

k�F ¼
� ð2νÞ1=2l−1B ; ν < 1=2

½2ð1 − νÞ�1=2l−1B ; ν > 1=2.
ð2Þ

The above expression clearly obeys the particle-hole
symmetry ν ↔ ð1 − νÞ about ν ¼ 1=2, provided that lB
is fixed. Using Eqs. (1) and (2), we then work out a
quadratic equation for νGR; details are given in the
Supplemental Material [12]:

ð2νGR;minÞ1=2
1 − 2νGR;min

¼ a
2lB

�
iþ 1

4

�
: ð3Þ

Solving this equation, we arrive to a hitherto unknown
expression for νGR;min:

ν�GR;min ¼
1

2
�
½ðiþ 1

4
Þ2ðalBÞ2 þ 1�1=2 − 1

ðiþ 1
4
Þ2ðalBÞ2

: ð4Þ

It is clear from Eq. (4) that at a fixed a=lB, ν�GR;min is
symmetric about ν ¼ 1=2. In Fig. 4 we plot the predictions
of the Eq. (4) (red curves) with i ¼ 1. Similar to Fig. 3, the
data of Fig. 4 show excellent agreement with the minority-
carrier model. In Fig. 4 we also plot the predictions of the
Dirac theory (green curves, see the Supplemental Material
[12]) [37]. Dirac theory also exhibits particle-hole sym-
metry but it does not agree with the data quantitatively. The
low-density (small a=lB) data and their agreement with the
minority-carrier model are again particularly important as
they clearly differentiate this model from the Dirac theory.
To place our results in a broader perspective, we compare

the CF Fermi sea with other strongly interacting systems
whose physics is not well understood [42]. For example, in
high-Tc cuprate superconductors, the volume of the Fermi
surface for large hole dopings is determined by the majority
carriers [43,44], exactly opposite to the CF Fermi sea.
Strangely, however, at low hole dopings, the volume of the
Fermi surface appears to be very small and equal to the
doping density [45]. Such subtlety in the Fermi surface
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remains a mystery. In contrast, we find that the Fermi sea of
strongly interacting CFs is always governed by the minority
carrier density, Luttinger theorem, and particle-hole sym-
metry. This suggests that the intricate physics of other
Fermi seas harboring strongly interacting electrons could
perhaps be simplified by finding the emergent particles of
the systems, similar to the CFs in the half-filled LL.
We conclude by making three remarks. First, our direct

measurements of CF Fermi wave vector provide quantita-
tive evidence that the Luttinger theorem and particle-hole
symmetry are obeyed in a system where the quasiparticles
themselves are a product of strong interaction. Second,
unlike the cuprates and the heavy fermion compounds such
as YbRh2Si2 [46] and EuRh2Si2 [47], the CF Fermi wave
vector and Fermi sea area appear to be determined by the
minority-carrier density in the lowest LL. Third, our data
show deviations from both Dirac [18] and Halperin-Lee-
Read [3] theories [30,37]. The deviations can possibly be
reconciled if one incorporates subtle corrections in the
Dirac/Halperin-Lee-Read framework [35]. This brings up a
crucial question. Is it simply a fortuitous coincidence that
the results of such sophisticated theories lead to the simple
experimental conclusion, namely, k�F ¼ ð4πnminÞ1=2, even
in the strongly interacting limit?
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