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We show that changes in the surface tension of a particle due to the presence of nonionic surfactants and
impurities, which alter the interfacial entropy, have an impact on the value of the thermophoretic mobility.
We have found the existence of different behaviors of this quantity in terms of particle size which can be
summarized through a power law. For particles that are small enough, the thermophoretic mobility is a
constant, whereas for larger particles it is linear in the particle radius. These results show the important role
of the interfacial entropic effects on the behavior of the thermophoretic mobility.
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Particles movement induced by temperature gradients [1]
known as the Soret effect has been the subject of many
experimental and theoretical studies in recent years [2–5] due
to its importance in areas as diverse as soft condensedmatter,
biophysics, microgravity, and nanoscience. Thermophoresis
may, for example, be used for the control of colloids and
macromolecules [6] and to implement effective particle
separation methods [7] and focusing techniques [8].
Studies on thermophoresis have also shown their importance
in the deposition of micro- and nanoparticles [9] in laminar
[10] and turbulent [11] pipe flows, removing and collecting
aerosol particles [12] and in biotechnological applications
[13,14].
Crucial to the study of the motion of the particles is the

knowledge of the thermophoretic mobility DT, the propor-
tionality factor between the thermophoretic velocity v⃗T and
the temperature gradient∇T: v⃗T ¼ −DT∇T, and whether it
depends on the particle size or not. There is no general
consensus on this question [15]. Experiments performed
with polystyrene solid particles of sizes between 40 nm and
2 μm in Tris buffer solution, show a linear dependence of
the thermophoretic mobility on the particle radius a [16]
whereas others made with n-alkane liquid particles in water
or surfactant ranging from 5 to 16 nm support the fact that
the mobility does not depend on the particle radius [17,18].
An experiment carried out with latex particles in a solution
containing tetrabutylammonium perchlorate with particle
radius ranging from 100 to 400 nm [19], supported by
simulation results of rigid particles with radius in the
interval 36 to 154 nm [20] shows a decreasing behavior
of the thermophoretic mobility as a function of the particle
radius. These different behaviors of DT may be due to the
fact that more than just a single driving force determines the
thermophoretic force in experimental systems, each with a
different size dependence. The thermophoretic force may
result from the temperature response of the core material of
the particles relative to that of the solvent, the possible

presence of electrical double layers, and from the distri-
bution of surfactant and fluid molecules at the interface
which affects the interfacial entropy. To analyze the origin
and the role of the interfacial entropic effects in thermo-
phoresis is the main objective of this Letter.
The thermophoretic velocity can be obtained from

hydrodynamics by computing the force exerted by the
solvent on a particle moving with a given velocity in the
presence of a temperature gradient [21–24]. The force
contains a thermophoretic contribution proportional to the
temperature gradient [25]. A general expression valid when
the particle is a drop, a bubble, or a solid particle with a
monolayer of adsorbed solvent [26–28] was given in
Ref. [23]: F⃗ ¼ −μ−1u⃗þDTμ

−1∇T, where μ is the mobil-
ity. Under the hydrodynamic approach, DT is proportional
to the derivative of the surface tension with respect to the
temperature γT ≡ dγ=dT and to the particle radius (a) and
is a function of the viscosities and thermal conductivities of
the inner and outer fluids.
In our analysis, we show how the distribution of the

nonionic solvent and surfactant molecules adsorbed at the
interface may depend on the size of the particle. Since this
distribution affects the interfacial entropy, it may bring
about a dependence of the surface tension and, conse-
quently, of the γT factor on particle size. We thus find that
for sufficiently large particles, the ratio between the
numbers of fluid and surfactant molecules on the particle
surface does not depend on the radius (a). Therefore, γT
does not depend on a and so the thermophoretic mobility is
a linear function of a. On the contrary, for small particles
that ratio may depend on the radius of the particle due to
entropic effects which lead to a different behavior of γT as a
function of a.
To show how the distribution of fluid and surfactant

molecules at the interface affects the thermophoretic
velocity, we will consider the stationary movement of a
drop immersed in a fluid subjected to a temperature
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gradient. Both the fluid inside the drop and the surrounding
fluid are assumed to be multicomponent, incompressible,
and Newtonian. Quantities inside and outside the drop and
at the interface will be denoted by the subindexes i, o, and
s, respectively.
To compute γT , we use the Gibbs-Duhem relations for

the inner (i) and outer (o) fluids and the interface (s) to
obtain

−Adγ ¼ SðsÞdT þ NðsÞ
1 dμðsÞ1 þ NðsÞ

2 dμðsÞ2 ; ð1Þ

−VðβÞdpðβÞ ¼ SðβÞdT þ NðβÞ
1 dμðβÞ1 þ NðβÞ

2 dμðβÞ2 : ð2Þ

The fluids in each subsystem have two components
indicated by subindexes 1 and 2. In Eq. (2), β ¼ i, o.
Moreover, A is the surface area of the particle, N the
number of molecules, μ the chemical potential, V the
volume, and S the entropy.
We consider equipotential systems for which dμðβÞ1 ¼

−dμðβÞ2 and rewrite the number of molecules of the j

component as NðβÞ
j ¼ NðβÞxðβÞj , with xðβÞj the molar fraction

in the subsystem β. Moreover, we assume that the radius of
the particle is constant and use dðpðiÞ − pðoÞÞ ¼ 2dðγ=aÞ
obtained from the Young-Laplace equation for a constant
particle radius. These assumptions together with equilib-

rium conditions (dμðiÞj ¼ dμðsÞj ¼ dμðoÞj ), leads to

γT ¼ −ρa
½sðsÞ − δxðsÞð ΔðρsÞ

Δ½δðρxÞ�Þ�
1þ 2

a
δxðsÞ

Δ½δðρxÞ� ρa
: ð3Þ

Here ρa ≡ N=A is the interfacial density, sðsÞ the interfacial
entropy per mol, δyðβÞ ≡ yðβÞ1 − yðβÞ2 in which y could be a
thermodynamic variable (x, s, ρ among others), ΔðρsÞ≡
ðρsÞi − ðρsÞo, with ρ the molar density, and ΔðδρxÞ≡
½δðρxÞ�i − ½δðρxÞ�o. Defining s� ≡ sðsÞ − δxðsÞðΔðρsÞ=
Δ½δðρxÞ�Þ as the surface entropy considering the difference
in the changes of the chemical potential of the components
with temperature and introducing a Tolman-like length [29]
δ ¼ fδxðsÞ=Δ½δðρxÞ�gρa, we obtain

γT ¼ −ρa
s�

ð1þ 2δ
a Þ

: ð4Þ

From this expression, we conclude that when the size and
number of surfactant molecules increases, the number of
configurations available for the molecules of the fluid
decreases and therefore the interfacial entropy decreases
and so does γT . For a one-component system (xβ ¼ 1)
forming two phases (bubble in liquid or drop in vapor),
for which δxðsÞ ¼ 1 and Δ½δðρxÞ� ¼ ρi − ρo, i.e., δ ¼ ρa=
ðρi − ρoÞ, the length δ converges to Tolman’s length [29].

The analysis of how surface tension depends on the
radius of the particle was performed in Ref. [29] for only
one component by assuming that ρa and the temperature are
constant. In general, however, we could expect a nonuni-
form distribution of the solvent molecules with the particle
size in the interfacial region, mainly in small enough
droplets. We can thus express the interface density as

ρa ¼ ρð∞Þ
a ΩðaÞ; ð5Þ

where ρð∞Þ
a ≡ Nð∞Þ=A is the surface density at a sufficiently

large particle radius and ΩðaÞ is a function accounting for
finite-size effects in the surface density that we have to
determine.
Considering an ideal interface for which s� ¼ s�1x

ðsÞ
1 þ

s�2x
ðsÞ
2 and large enough particles, we then obtain

γ∞T ¼ −s�ρð∞Þ
a ¼ xðsÞ1 γð∞Þ

T;1 þ xðsÞ2 γð∞Þ
T;2 ; ð6Þ

in which γð∞Þ
T;1 and γð∞Þ

T;2 are usually reported in the literature
for pure liquids and large systems [30]. Finally, the general
expression for γT in an ideal system in which the size of the
particle does not change with the temperature, is given by

γT ¼ ΩðaÞ γð∞Þ
T

ð1þ 2 δ
aÞ
: ð7Þ

When this expression is integrated in temperature, one
obtains a generalization of Tolman’s formula for the surface
tension valid for multicomponent systems and by taking
finite-size effects into account [29].
For a nonideal interface, the surface tension derivative

with respect to the temperature for large systems is in this
case given by

γ̂ð∞Þ
T ¼ γð∞Þ

T þ fðxðsÞj ; TÞ; ð8Þ

where the term f is a nonideal surface entropy that may in
general depend on the interfacial molar fractions and
temperature. It considers the changes in the surface entropy
caused by surfactants or impurities adsorbed on the
interface.
For a nonconstant particle radius and by performing an

analogous procedure to the one above, we can then arrive at
general expression for γT in which nonideal interactions are
also considered:

γT ¼ ΩðaÞ
ð1þ 2 δ

aÞ
�
γ̂ð∞Þ
T þ 2δ

3a
γkv

�
; ð9Þ

where kv ¼ ð1=voÞðdvo=dTÞ is the thermal compressibility
coefficient.
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To compute ΩðaÞ, we first find the number N of fluid
molecules at the interface whose available space is affected
by the presence of impurities and surfactants (see Fig. 1).
The area of the particle surface occupied by the N fluid
molecules is Nπr20=ϕ, where r0 is the radius of a molecule
and ϕ the packing factor of the interface. Values of ϕ fall in
the interval 0.34 ≤ ϕ ≤ 0.5 [31]. For a liquid interface like
ours, we chose the lowest value, ϕ ≈ 0.34. Analogously,
the surface area occupied by the surfactant molecules is
N0πr2s=ϕ, where N0 is their number and rs their radius. The
surface area covered by both fluid and surfactant molecules
is thenM ¼ ðπ=ϕÞNr20½1þ ðrs=r0Þ2N0=N�, where the ratio
between surfactant and fluid molecules depends on the
surface molar fraction of surfactant in the interface

(xðsÞ3 ), N0=N ¼ xðsÞ3 =ð1 − xðsÞ3 Þ.
To obtain the number of solvent molecules on the

surface, we use the constraint M < 4πa2 in the previous
expression of the area covered by fluid and surfactant
molecules M. The value of N is then given by the floor
function

N ¼
�ð4ϕÞða=r0Þ2

½1þ gðaÞ�
�
; ð10Þ

where the quantity gðaÞ≡ ðrs=r0Þ2N0=N compares the
areas of the particle surface covered by fluid molecules
and surfactant.
In Fig. 2(a), we plot the total number of molecules on the

interface (Nt ≡ N þ N0) for the cases N0=N constant and
N0=N linear in a. Both behaviors lead to a constant DT and
to aDT linear in a. Curves intersect at a value of the particle
radius a0, below which the total number of particles is
higher for the case N0=N ∼ a than when N0=N∼ const.
Contrarily, above a0 only the opposite is true. Figure 2(b)
shows that the area not covered by particles ψ is larger in
the first case at values of the radius a < 13 nm. A linear
dependence of N0=N on a and, equivalently, a linear
dependence of gðaÞ on a is thus entropically more

favorable for a ≤ a0, where a0 is a threshold radius at
which the ratio between the number of molecules of
surfactant and the fluid in the interface becomes constant.
Notice that the factor gðaÞ can be expressed as

gðaÞ ¼ gða0Þ½Θða − a0Þ þ ða=a0ÞΘða0 − aÞ�; ð11Þ

where

gða0Þ ¼
�
rs
r0

�
2
�
N0

N

�
ða0Þ

: ð12Þ

For a monolayer composed by only fluid molecules, the
number of molecules on the interface is approximately
Nð∞Þ ¼ πϕða=r0Þ2. Therefore, by considering Eq. (5), for
which ΩðaÞ ¼ N=Nð∞Þ and using Eq. (10), the finite-size
effects in the surface density can thus be evaluated through
the relation

ΩðaÞ ¼ 1

πϕða=r0Þ2
�
4ϕða=r0Þ2
1þ gðaÞ

�
: ð13Þ

Using the representation of the floor function in Fourier
series [32], we approximate the surface density as ΩðaÞ≈
4=π½1þ gðaÞ�− 1=N∞þP

k sin½8Nð∞Þ=1þ gðaÞ�=πkNð∞Þ.

FIG. 1. (a) Fluid (gray) and surfactant (black) molecule dis-
tribution in the interface of a spherical particle of radius a.
(b) Distribution of fluid and surfactant molecules in a spot of the
interface.
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FIG. 2. (a) Total number of molecules on the surface Nt ¼
N þ N0 for different particle radii a½nm�. (b) fraction of the
particle-free area ψ ≡ 1 −M=4πa2. The black dashed line
corresponds to a constant value of N0=N and the gray continuous
line to a linear dependence of N0=N on the particle radii a. Both
behaviors lead to a constant DT and to a DT linear in a.
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For Nð∞Þ ≫ 1, we can approximate Ω ≈ 4=π½1þ gðaÞ�.
This behavior explicitly shows how the presence of
surfactant molecules on the surface mediated by steric
and excluded volume effects affects the distribution of fluid
molecules and thus the surface tension.
In Fig. 3, we show the behavior of ΩðaÞ for a monolayer

interface with r0 ¼ 0.32 nm and threshold radii a0 ¼
32 nm for different values of the ratio rs=r0. To illustrate
the behavior of this function, we use the approximation

xðsÞ3 ≈Φðrs=r0Þ, where Φ is the volume fraction of the
surfactant in the solution, with Φ ≈ 0.029 [18]. From the
figure, we observe the power law behavior Ω ∼ 1=aα with
0 < α < 1. In particular, Ω ∼ 1=a for rs=r0 ¼ 12 and the
curve exhibits sharp behavior due to the discrete nature of
N inherent to the floor function of Eq. (10). By decreasing
rs=r0, Ω tends to a constant.
To further verify the validity of our model, we will

consider the case of a nonelectrolytic system of n-alkane
water with a nonionic surfactant studied in Refs. [18,33]
and compare the results of our model with the experimental
data [18]. We will assume that the molecular radius,
surfactant fraction, and behavior with the temperature is
the same for each n alkane [18]. Moreover, based on the
experimental result that the thermophoretic mobility is
proportional to the temperature [34,35], we will assume
that the function f accounting for the nonideal behavior of
the interface is linear in the temperature. In order to
consider the surface entropy change by adsorption of
surfactant molecules, f must also be proportional to the
surface area covered by the surfactant gðaÞ. To account for
changes in the direction of the thermophoretic velocity
reported in Ref. [18] at a certain transition temperature Tt,
we write fðTÞ ¼ kfgðaÞðT − TtÞ, where kf is a fitting
parameter.
To obtain the surface tension, we integrate Eq. (9) in the

temperature for rs ¼ 12r0 and a0 ¼ 16 nm and use kf to fit
the experimental data [18,36]. The values of kf for each n
alkane fall between 2.5 to 5.4 ½mJ=m2K2�. Figure 4 shows

the behavior of γ as a function of T, evidencing an accurate
matching of model results and experimental data for each n
alkane. The dashed black curve gives the surface tension
for a constant value of N=A [29], which does not reproduce
the experimental data for n octane. This feature supports
our contention that N=Amust be a function of particle size.
The thermophoretic mobility can be obtained from

hydrodynamics [23] and is proportional to γT in the form

DT ¼ −
2aγT
η0

1

ð2þ λi=λoÞð2þ 3ηi=ηoÞ
; ð14Þ

where ηi;o and λi;o are the viscosities and thermal con-
ductivities of the inner i and outer o fluids. Our analysis of
γT then leads us to know how the thermophoretic mobility
behaves in accordance with the size of the particle. This
expression does not consider the thermodynamic properties
of the core material that may have an impact on the total
mobility, as happens in the case of Janus particles that
exhibit an internal mass gradient [37,38].
In Fig. 5(a), we show the behavior of γT as a function of

the particle size for the family of the n alkanes studied in
Ref. [18], evaluated at T ¼ 27 °C. Since the n-alkanes have
similar physicochemical properties, we plot γT for the
family of n alkanes, inferring the behavior: γT ∝ 1=a. In the
figure, we also compare the results obtained from our
model with experiments [18]. The thermophoretic mobility
as a function of the particle size is shown in Fig. 5(b). We
observe that it varies smoothly around the constant value
3.54 μm2=Ks, as commented in Refs. [17,18]. These
variations could be a consequence of the small size of
the particles [39] in whose case a continuous variation of
their surface area is not necessarily followed by a constant
change of their covered area, as illustrated in Fig. 2(b).
In this range of particle sizes, one can question the

validity of a purely thermodynamic treatment due to a
greater importance of fluctuations at those scales [40] and
to the possible existence of a strong coupling between
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respectively, whereas the dashed black line is the result for
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particle and bath that may modify the thermal response of
the particle [41]. To estimate the impact of these factors on
the thermophoresis phenomenon is currently an unsolved
problem.
By using Eq. (14) and considering the behavior of Ω

shown in Fig. 3 and Eq. (9), we infer the power law for the
thermophoretic mobility DT ∝ a1−α in which the exponent
α depends on how the surfactant molecules are distributed
on the particle surface. The value α ¼ 0 corresponds to a
size-independent distribution which results in a linear
behavior of DT with the particle radius, similar to the
one observed in Ref. [16] for charged particles. Interfacial
entropic effects could in this case contribute to the thermal
response of the particle. It has been indicated that this linear
behavior is not reproduced by means of a pure hydro-
dynamic treatment for charged particles [42]. When α ¼ 1
the fraction of the covered area by the surfactant on the
interface increases linearly with the radius and conse-
quently DT does not depend on the size of the particle,
as observed experimentally in Refs. [17,18]. In the case in
which α > 1, DT decreases with the particle radius, as
observed in the experiments presented in Refs. [19,20].
Finally, for long enough polymers it has been observed that
DT does not depend on their length [43]. This result can be
explained from our theory if we model the unrolled
polymer as a set of bonded spheres having the same radius.
Since the radius is small we conclude that the effective DT
is a constant.

In summary, we have shown that the presence of fluid
and surfactant molecules adsorbed on the particle surface
modifies the interfacial entropy and in turn the surface
tension. This feature has an impact on the thermophoretic
mobility which in general fulfills a power law in the particle
radius. We have found the tendency that for particles that
are small enough, the thermophoretic mobility is a constant
whereas for larger particles it is linear in the radius. Our
results show how and under what conditions interfacial
entropic effects play a relevant role in the behavior of
thermophoretic mobility.
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