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It is a long-standing belief that, in the diffusion regime, the intensity statistics is always stationary and its
probability distribution follows a negative exponential decay. Here, we demonstrate that, in fact, in
reflection from strong disordered media, the intensity statistics changes through different stages of the
diffusion. We present a statistical model that describes this nonstationary property and takes into account
the evolving balance between recurrent scattering and near field coupling. The predictions are further
verified by systematic experiments in the optical regime. This statistical nonstationary is akin to the
nonequilibrium but steady-state diffusion of particulate systems.
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Intensity fluctuations are ubiquitous consequences of
coherent waves encountering disordered media. The sta-
tistics of intensity fluctuations have been examined in
various regimes of wave propagation, including the tran-
sition from ballistic to diffusion [1,2], the localization
[3,4], and the superdiffusive regimes [5]. The common
wisdom is that for waves in the diffusive regime, the
intensity variation is a stationary random process that
follows Rayleigh statistics.
However, when certain symmetries exist in low-

dimensionality disordered systems, non-Rayleigh statistics
occur contingent on the properties of incident waves [6–9].
Anomalous intensity statistics are also encountered in
disordered media where deviations from the Rayleigh
distribution are not due to properties of randomness
[10–13]. Rather, they are caused by the varying contribu-
tions of stationary and propagating waves, which are
specific to transition from closed to open systems [14].
Counterintuitively, the interaction with three-dimensional

and highly disordered media does not necessarily guarantee
the randomization of waves. It has been shown that when
disorder increases, thewaves can scatter recurrently and their
trajectories can locally “loop” [15–17]. This mechanism
reduces the diffusion coefficient and could also lead to the
modifications of intensity statistics. Notably, there is also a
competing process in random media; the near field coupling
between scattering centers effectively destroys the “loops”
created during diffusion [18]. This competition ultimately
leads to a transition between different diffusion regimes
[19], which suggests a statistical nonstationarity in the
properties of waves during their propagation inside the
diffusion regime.
In this Letter, we introduce a stochastic model that

describes the diffusive waves as the superposition of two
types of fields. Accounting for both recurrent scattering
and near field coupling effects, the model predicts that the
distribution of intensity fluctuations varies within the

volume of interaction. This nonstationary behavior is
experimentally demonstrated in the optical regime.
When monochromatic waves propagate through non-

dissipative, strongly scattering media, the steady-state field
distribution can be regarded as the superposition of two
fields with different stochastic properties. The first one
corresponds to traveling waves, and, due to the inherent
randomness of scattering, can be described as a Gaussian
random process. In this component, the phase is uniformly
distributed over ½−π; π� while the amplitude can be con-
sidered unity. As such, the distribution of local intensities
follows a negative exponential function [20]. The second
type of contributions correspond to waves that manifest
phase correlations. Because of recurrent scattering events,
waves can travel locally along counterpropagating trajec-
tories, which leads to stochastic properties specific to
correlated waves. In this case, the phases are no longer
uniformly distributed, which is reminiscent of so-called
partially developed speckle fields [21,22]. Without loss of
generality, one can consider such waves as having constant
amplitudes and the phases Gaussian distributed with zero
mean and standard deviation σθ.
The above physical situation can be described by

regarding the local field as the overlap of traveling E⃗tðr⃗Þ
and correlated E⃗cðr⃗Þ waves:

E⃗ðr⃗Þ ¼ 1ffiffiffiffiffiffi
N1

p
XN1

m¼1

eiðθmþk⃗m·r⃗Þ þ ε
1ffiffiffiffiffiffi
N2

p
XN2

n¼1

eiðθnþk⃗n·r⃗Þ: ð1Þ

These two components are the result of the superposition
of N1 and, respectively, N2 plane waves. In Eq. (1), the
corresponding phases and the wave vectors of these wave
components are denoted by θm and θn and respectively, k⃗m
and k⃗n. Note that these phases are independent random
variables and θm is uniformly distributed over ½−π; π�. The
parameter ε measures the relative energetic contribution of
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the two fields. This decomposition is somewhat similar to
the field description in a disordered cavity that is only
weakly coupled to the environment [14,23].
From Eq. (1) and the central limit theorem, one can now

evaluate the joint probability density function (PDF) for the
real and imaginary parts of phasor E⃗ as detailed in the
Supplemental Material [23]. The PDF of the intensity
fluctuations pIðIÞ, can also be obtained following a
Jacobian transformation. It can be shown that

pIðIÞ ¼
1

4πσRσI

Z
π

−π
exp

�
−
� ffiffi

I
p

cosφ −R0ffiffiffi
2

p
σR

�2

−
� ffiffi

I
p

sinφffiffiffi
2

p
σI

�2�
dφ; ð2Þ

written in terms of σ2R ¼ 1
2
þ ðε2=2Þ½1þ expð−2σ2θÞ� −

ε2 expð−σ2θÞ and σ2I ¼ 1
2
þ ðε2=2Þ½1 − expð−2σ2θÞ�, which

are the standard deviations of the real and imaginary parts
of the total field E⃗ with the corresponding phase φ. Note
that the interference among the correlated waves leads to a
coherent background R0¼ε

ffiffiffiffiffiffi
N2

p
expð−σ2θ=2Þ. Importantly,

the values of σR, σI, and R0 depend only on three
parameters: the standard deviation of the phase distribution
σθ, the number of correlated waves N2, and the amplitude
factor ε.
As follows from Eq. (2), the distribution of intensity

fluctuations and, therefore, all its other measurable param-
eters depend on the statistical properties of the correlated
components. Because of two competing mechanisms
mentioned earlier, these properties may evolve during
propagation and, consequently, the intensity statistics
becomes a nonstationary process as depicted schematically
in Fig. 1(a). When propagating through strongly disordered
media, waves traveling over relatively small distances
develop stronger phase correlations due to recurrent scat-
tering. As the propagation progresses, the energy associ-
ated with this kind of waves leaks out through near-field
coupling into different channels corresponding to propa-
gating waves. This is the gradual transfer of energy from
quasilocalized modes to propagating modes [19,24], which
will therefore alter the distribution of intensity fluctuations.
To describe the evolution of the statistical nonstationarity

of the intensity fluctuations, one needs to examine how the
parameters σθ, N2, and ε depend on the propagation path
length s. First of all, the PDF of the resultant field E⃗ is an
ellipticalGaussian distribution centered on the real axis of the
complex plane, resembling a partially developed speckle
[20]. Second, the standard deviation σθ of the phase
distributions in the recurrent scattering loops is expected
to beminimal and,meanwhile, ε is less than unity because the
probability of recurrent scattering is rather small.Under these
conditions, σR ≈ σI, which means that the ellipticity of
the PDF contour approaches unity. Therefore, when the
statistical properties of the amplitude and the phase

distributions donot vary significantly, themain consideration
relates to the energetic contribution of correlated waves. This
can be quantified by a dimensionless parameter rðsÞ ¼
IcðsÞ=ĪðsÞ ≈ ½ε2N2 expð−σ2θÞ�=½1 þ ε2 þ ε2N2 expð−σ2θÞ�,
which gauges the energetic contribution of the correlated
waves with respect to the total energy. This parameter can be
estimated using a mesoscopic description of wave transport
in scattering medium that can be based on measurable
properties as we show in the following.
In the mesoscopic theory of waves transport, the

probability of recurrent scattering pX is determined by
the ratio between the trajectory volume and the volume
explored by the waves [25], pX ¼ λ2=2l�2, which depends
on the wavelength and the transport mean free path. During
propagation, the energy corresponding to crossing channels
of path length s leaks out due to near field coupling at
a rate exp½−ð3=2Þn0σNFs�, where n0 is the number density
of scatters and σNF is the near-field scattering cross

FIG. 1. Origin of PDF nonstationarity. (a) Strong recurrent
scattering (green) at short paths leads to deviations from a
negative exponential while near-field coupling (red) along longer
paths tends to change it back. (b) The energy ratio rðsÞ gauges the
energetic contribution of correlated waves with respect to total
energy. Because of the competition between creation of loops and
energy leaking through near-field coupling, rðsÞ depends on the
trajectory length [blue curve, see Eq. (3)].
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section [26]. Therefore, the energy ratio rðsÞ varies along
paths of increasing path length as

rðsÞ ¼ λ2

2l�2
exp

�
− 3n0σNF

2
s

�
: ð3Þ

An example of this evolution is also illustrated in
Fig. 1(b) for waves with 1310 nm wavelength interacting
with a strongly scattering medium consisting of 330 nm
sphereswith refractive index of 2.3 packed randomly at 50%
volume fraction. The transportmean free path l� and the near
field scattering cross section σNF are calculated following
the approaches in Refs. [18] and [26], respectively.
As seen in Fig. 1, the energetic contribution of the

correlated waves diminishes gradually because of the
competing mechanism of loops creation due to randomness
and the loops fading due to energy leaking through near
field interactions. Thus, the statistics of intensity fluctua-
tions changes when the interaction path length varies.
The energetic parameter defined in Eq. (3) measures the
contribution of correlated waves and, therefore, it deter-
mines the various features of the intensity statistics. In other
words, rðsÞ determines the deviation of intensity fluctua-
tions PDF from a negative exponential.
To demonstrate experimentally the predictions of this

statistical model, we performed path-length-resolved mea-
surements of light reflected from strongly disorder media.
Using the optical path-length spectroscopy [27], path-
length-resolved intensity patterns were recorded for differ-
ent realizations of randomness [23]. The interferometric
measurement uses a partially coherent source with a central
wavelength of 1310 nm and the temporal resolution of about
100 fs. Randommediawith different volume fractions (from
2.5% to 50%) were prepared using 0.33 μm-in-diameter

TiO2 particles (refractive index 2.3) embedded in a polymer
matrix with refractive index of 1.5. For each sample, we
collected an ensemble of 1000measurements corresponding
to different realizations of the random medium.
Typical results are illustrated in Fig. 2 for the specific

case of a sample with 50% volume fraction of scattering
centers. As evident in the right panels, for longer and longer
paths through the medium, the intensity fluctuations
change their statistical properties. These changes can be
quantified by the normalized variance of intensity fluctua-
tions (speckle contrast) that varies with the path length as
shown in Fig. 3 (dots). To the best of our knowledge, this is
the first time that the second order statistics of the intensity
fluctuations are analyzed as a function of wave path length.
In the experiment, the effects of polarization and detection
noise have been carefully removed.
The scattering strength of different random media can be

gauged by an averaged transport mean free path l�. Note
that the absorption coefficient of TiO2 in this wavelength is
negligible. For each sample, l� is evaluated from measure-
ments using a bistatic reflection technique capable of
providing information independent of particular surface
conditions [28]. The corresponding values are indicated in
the legend of Fig. 3. Note that, starting from pathlengths
longer than s ¼ 200 μm, for the three selected samples
with high volume fraction, light has already traveled more
than 30 l� through the medium, which ensures that the
measurements correspond to the diffusion regime [29].
As we mentioned before, under the assumption of small

σθ, the PDF deviation from a negative exponential can be
characterized by rðsÞ, as the distribution of intensity fluctua-
tions converges towards a modified Rician distribution [20].

FIG. 2. Path-resolved intensity fluctuations for different real-
izations α of a semi-infinite inhomogeneous medium with 1.5
refractive index consisting of 50% volume fraction of TiO2

particles with a diameter of 0.33 μm. The intensity fluctuations
corresponding to three different paths of length 80, 400, and
720 μm are shown on the right panels.

FIG. 3. Path-length-resolved normalized variance (contrast) of
intensity fluctuations in strong scattering media displaying sub-
diffusive behavior of propagation. The solid lines denote the
evaluations based on mesoscopic wave transport theory in Eq. (3).
The dots are the corresponding experimental results for media
with different volume fractions and transport mean free paths as
indicated. The shaded areas represent the standard deviation of
five different datasets, each including 200 measurements.
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In this limit, the correlatedwaves generate a coherent, but not
necessarily uniform background that reduces the normalized
variance according to CðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − rðsÞ2

p
, where rðsÞ is

evaluated fromEq. (3). This is illustrated in Fig. 3, where, for
all the samples, the experimental results are very well
described by the model based on the mesoscopic theory
of waves transport. The small deviation in the case of 50%
medium indicates that, at such high packing fraction, the
simple model in terms of isolated leaking events in Eq. (3)
may not be sufficient anymore; a more specific description is
necessary to describe the rapid transition to the uncorrelated
regime.
Let us now discuss the significance of these results. First

of all, one could argue that, no matter how the multiple
scattering process evolves inside a scattering medium, a
portion of the initial coherent field is still present, which
could represent the “correlated contribution.” This would
also lead to a monotonic increase of the normalized variance
with increasing path lengths because the ballistic component
degrades aswaves penetrate deeper inside themedium. Such
a gradual transition from ballistic to diffusive regimes has
been studied extensively [2]. Naively, one could consider
that the ballistic component, i.e., the coherent background,
decays as exp½−ðs=2þ z0Þ=l��; where z0 is a boundary
correction as suggested in Ref. [30] and l� is calculated
following Ref. [18]. Based on this argument, an estimation
of the normalized variance C ¼ 0.96 for all samples is
indicated by the pink dotted line in Fig. 4. This particular
valuewas chosen arbitrarily but it is representative for the so-
called fully developed speckles. One would expect that this
value is reached for smaller and smaller path lengths when
increasing the scatterer density and correspondingly reduc-
ing the scattering mean free path.
As clearly indicated by the solid dots in Fig. 4, we find

experimentally that this value of C ¼ 0.96 is reached only
for significantly deeper penetrations into random media
with volume fractions ranging from 2.5% to 50%. The error
bars represent the standard deviations corresponding to five
different datasets each based on 200 independent measure-
ments. It is also evident that for low concentrations, the
simple ballistic attenuation argument makes a reasonable
description of the experimental data. In this regime, the
cutoff path length reduces with increasing the volume
fraction because the waves scatter progressively more for
the same over all path lengths.
However, with increasing volume fraction f, this simple

explanation becomes insufficient. The pink dotted line
deviates significantly from the experimental values. For
strongly scattering media with f > 30%, one expects the
emergence of the competing mechanisms of recurrent
scattering and near-field energy leaking [19]. These con-
tributions are not accounted in the conventional treatment
of the statistical properties of scattered waves. We note that,
importantly, this situation happens not in the transition from
ballistic to diffusion, but rather deep inside the diffusion

regime. Using the mesoscopic model in Eq. (3), one can
evaluate the intensity normalized varianceC as a function of
both path-length and scattering strength as a contour plot in
Fig. 4.We also indicated, with the blue dotted line, the value
ofC ¼ 0.96, which, in this case, corresponds to path lengths
that agree quite well with the experimental results.
We would like to emphasize that, in Fig. 4, the region

above the pink dotted line can be interpreted as the conven-
tional diffusive regime where complete randomness is
assumed and, consequently, the statistics is expected to obey
the Rayleigh law of Gaussian statistics. However, the experi-
ments indicate that this happens practically only above the
blue dotted line. In the region between these two lines, the
phase of the random waves is not uniformly distributed
primarily because of the recurrent scattering as explained
here. As the wave penetrates deeper into the medium, the
probability distribution of the intensity fluctuations starts to
conform to a negative exponential function.
The path-length threshold for which a complete phase

randomization occurs is determined by the average pen-
etration depth at which the balance is reached between the
on-shell and off-shell wave manifestations indicating a new
phase in the waves diffusion [25]. The path lengths at which
this phase transition occurs are indicated by the brown
symbols in Fig. 4. The difference is due to the arbitrary
normalized variance value 0.96 chosen for this comparison.
Above this threshold, a steady state establishes, which is
similar to the thermodynamic equilibrium reached at longer

FIG. 4. Contour plot of the normalized variance (contrast) of
intensity fluctuations for waves propagating along different path
lengths through random media with varying volume fractions.
The pink dotted line indicates the normalized variance of
C ¼ 0.96 calculated based on a ballistic attenuation model
(see text). The blue dotted line indicates the theoretical prediction
for the same value C ¼ 0.96 using the model based on Eq. (3).
The blue solid dots denote the experimental path lengths for
which the same value of normalized variance is attained. The
error bars designate the standard deviations from five different
datasets, while each includes 200 measurements. The brown
crosses indicate the path lengths for which the phase transitions
are observed in the diffusion of light (see text).
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times by particles diffusing under the influence of random
but finite-strength potentials.
We would like to add a final comment regarding the

evolution of the intensity variance. By analogy with thermal
diffusion of particulates, the path-length region between the
dotted lines in Fig. 4 can be regarded as the transitional
domain between a subdiffusional regime and the final steady-
state diffusion of particles exposed to random potentials
[31–35]. The extent of this transition depends not only on the
average strength of the potential but also on its spatial
correlation [36]. Thus, the statistical nonstationarity we
identified in the intensity fluctuations gauges how the
steady-state equilibrium is reached for different random
media. This process is rather fast at low f but it evolves
slower at higher concentrationswhen the scattering potentials
are increasingly more correlated. In our case, the diffusion is
constrained by the effective random potential created by
strong local interferences leading to weak correlations
between the partial waves that contribute to the detected
intensity. The waiting times at these confining locations is
determined by the strength of the evanescent coupling
between the structural elements of the random medium.
Conclusions.—The average distribution of intensity is

rather well understood for different regimes of wave propa-
gation [37,38]. Here we demonstrate that in strongly scatter-
ing media, the competition between the mechanisms of
recurrent scattering and energy leaking through near field
couplingdetermines an evident nonstationarity in the intensity
statistics. Surprisingly, this happens in the diffusion regime
where an assumption of complete wave randomization had
been widely used. The phenomenon resembles the coupling
between waves with different phase properties encountered
with disorder cavities with tunable properties [39,40].
As intensity fluctuations are rather easily accessible, our

results provide practical means to describe how the process
of wave propagation in random media evolves from having
a specific subdiffusive behavior to a long-time diffusion
regime as required, at large scales, by the ultimate thermal
equilibrium.
We have shown here that the normalized variance of

intensity fluctuations is a nonstationary property that
depends on intrinsic characteristics of the scattering
medium. Aside from the direct relevance to characterizing
and engineering materials with controlled properties, our
results also suggest a convenient optical testbed for study-
ing the anomalous transport phenomena in nonequilibrium
conditions pertinent to most natural processes [41–44].
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