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We implement direct readout of the symmetric characteristic function of quantum states of the motional
oscillation of a trapped calcium ion. Suitably chosen internal state rotations combined with internal state-
dependent displacements, based on bichromatic laser fields, map the expectation value of the real or
imaginary part of the displacement operator to the internal states, which are subsequently read out.
Combining these results provides full information about the symmetric characteristic function. We
characterize the technique by applying it to a range of archetypal quantum oscillator states, including
displaced and squeezed Gaussian states as well as two and three component superpositions of displaced
squeezed states. For each, we discuss relevant features of the characteristic function and Wigner phase-
space quasiprobability distribution. The direct reconstruction of these highly nonclassical oscillator states
using a reduced number of measurements is an essential tool for understanding and optimizing the control
of oscillator systems for quantum sensing and quantum information applications.
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Quantum state reconstruction is an important element
enabling diagnosis and improvement of quantum control.
As larger states come under experimental control the
number of measurements required to perform state
reconstruction becomes crucial [1]. Here, significant gains
can be found by choosing the appropriate basis in which to
make measurements [2]. Bosonic systems such as mechani-
cal harmonic oscillators and electromagnetic field modes
play a prominent role across quantum information [3,4],
quantum sensing [5–8], and fundamental studies [9,10].
These have been prepared in a wide range of quantum states,
including Fock, squeezed, and displaced states [11] and
superpositions of these [12,13]. Particular focus has been
placed on states involving superpositions of displaced states,
for which the archetypal example is the “Schrödinger’s cat”
superposition of two displaced coherent states [14]. Studies
include evolution under decoherence channels [15,16] as
well as storage and manipulation of information in error-
correction codes [4,17].
Prior works on oscillator state tomography include tech-

niques based on homodyne measurements [18] and methods
based on extraction of Fock state occupations, parity, and
ground state occupation following displacements applied to
the analyzed states [6,19–23]. These results are then proc-
essed to reconstruct states in the Fock state basis or to extract
phase-space quasiprobability distributions, such as the
Wigner andHusimi-Q function.When extracting quasiprob-
abilities, often a large amount of excess data is collected,
such as extracting many Fock state occupations which are
then reduced to a single parity value [2,19]. Direct parity
measurements can be performed using strong dispersive
Jaynes-Cummings interactions [21], but these require

settings that are challenging on some platforms [24,25],
and which often limit the quality and lifetime of larger field
states [26–28]. Direct measurements of ground-state pop-
ulation allow the extraction of theQ function, but this is not
well suited to analysis of catlike states since quantum
interference effects are exponentially suppressed with the
separation of the displaced wave packets [29].
A complete description of the quantum state is also given

by the characteristic function of the quasiprobability dis-
tributions [36]. The symmetric characteristic function is
defined as:

χðβÞ ¼ hD̂ðβÞi; ð1Þ

with D̂ðβÞ ¼ eβâ
†−β�â being a shift operator by the complex

amount β [37]. Here â is the usual harmonic oscillator
destruction operator and h·i ¼ hψosj · jψosi denotes the
expectation value evaluated on the analyzed state jψosi.
The quasiprobability distributions can be obtained from the
characteristic function χðβÞ using a two-dimensional
Fourier transform of χðβÞ [36]:

WlðγÞ ¼
1

π2

Z
χðβÞeljβj2=2eγβ�−γ�βd2β: ð2Þ

For l ¼ 0 this gives the Wigner function, for l ¼ −1 the
Husimi-Q function, and for l ¼ 1 the Glauber-Sudarshan P
representation. The P representation can become singular,
while the Wigner and Q function are both bounded. Thus
only the latter two are commonly used in experiments
[2,4,16,18–20,22–25,38]. Methods to directly reconstruct
χðβÞ have been proposed as early as 1995 [39,40] and have
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been used for 1D reconstruction of wave functions [41–44]
as well as 2D reconstruction of Fock and thermal states
[45]. It is important to note that single or few point
measurements of the characteristic and Wigner functions
provide different information. They correspond for exam-
ple to stabilizer readouts of different bosonic encodings
[3,4]. Furthermore, expectation values of powers of crea-
tion and destruction operators [36] are given by derivatives
of the characteristic function around the origin

hâ†mâniS ¼
� ∂
∂β

�
m
�
−

∂
∂β�

�
n
χðβÞjβ¼0:

Here the subscript S denotes symmetric operator ordering
[29]. Obtaining the same information requires integration
of the Wigner function over the complete phase space.
In this Letter we perform direct reconstruction of the

characteristic function of a trapped-ion motional oscillator
state, and illustrate its use by applying it to a squeezed state,
a displaced-squeezed state, a squeezed Schödinger’s cat
state [2,46], and a GKP codeword consisting of three
superposed displaced-squeezed states [3,17]. All recon-
structions are in close agreement with the independent
calibrations of the measured states, but reveal small
significant discrepancies in the experimentally set param-
eters, which could be used for future improvements in
state control. Due to the direct nature of the reconstruction
method, we find a reduction in data taking time of
more than a factor of 20 relative to methods we used
previously [29].
The oscillator used in the experiments is the axialmotional

mode of a single trapped 40Caþ ion with a frequency of
around ωm ≈ 2π × 1.9 MHz. All experiments were per-
formed at room temperature in a segmented linear Paul trap
consisting out of a stack of gold-coated wavers [47]. The
motional mode is controlled and read out via the internal
electronic levels j↓i≡ j2S1=2; mj ¼ 1=2i, and j↑i≡ j2D5=2;
mj ¼ 3=2i. The quantum circuit used for reconstruction is
given in Fig. 1. At the beginning of each experiment the axial
motional mode is initialized to a given oscillator state jψosi,
which we aim to reconstruct. The initial electronic state is
prepared to j↑i. Then a resonant carrier rotation R̂ðθ;ϕÞ ¼
cosðθ=2Þ1 − i sinðθ=2Þ½cosðϕÞX̂ þ sinðϕÞŶ� is applied
to the internal states. Here θ is proportional to the laser

pulse duration and amplitude, while ϕ is given by the
laser phase, 1 is the identity, while X̂ ≡ j↑ih↓j þ j↓ih↑j,
Ŷ ≡ −ij↑ih↓j þ ij↓ih↑j, and Ẑ ¼ j↑ih↑j − j↓ih↓j are the
Pauli matrices acting on the internal states. The rotation is
followed by application of an internal state-dependent force
(SDF) based on a bichromatic laser pulse realizing the
operation D̂½βðtÞX̂=2�, where βðtÞ=2 ¼ ηΩte−iΔφ=2 [48].
Here η ≃ 0.05 denotes the Lamb-Dicke parameter [49],
while the Rabi frequency Ω and Δφ are controlled via the
amplitude and relative phases of the bichromatic laser fields.
The SDF shifts the oscillator statewith a direction dependent
on the X̂ eigenvalue of the internal states. Finally the internal
state is read out using resonant fluorescence [49]. This circuit
can be viewed as performing an indirect measurement of the
oscillator via the internal states. The Pauli Ẑ expectation
value follows [50–52]:

hẐi ¼ heiθD̂ð−βÞ þ e−iθD̂ðβÞi=2
¼ cosðθÞRe½ χðβÞ� þ sinðθÞIm½ χðβÞ�: ð3Þ

The imaginary part of the characteristic function is measured
with a carrier rotation θ ¼ π=2, while the real part is obtained
by switching off the rotation (θ ¼ 0). In the followingwewill
use the short notation χðβÞ if the analyzed state jψosi is
unambiguous and χðβ; jψosiÞ where the specific state is
important.
The characteristic function is complex valued and

Hermitian χðβÞ� ¼ χð−βÞ and thus any half of the complex
space covered by β is sufficient for a complete measure-
ment. Therefore only a single measurement setting
(repeated to average quantum projection noise) is required
to obtain one characteristic function point. In our experi-
ment this represents a reduction of two orders of magnitude
of required readouts over previous work on Wigner
function reconstruction [2]. In the following experiments,
we sample the states on an uniformly spaced square grid in
order to learn more about the method and obtain pictures of
the quantum mechanical oscillator states.
We start our study by analyzing displaced and squeezed

vacuum states jψosi ¼ jδ; reiϑi ¼ D̂ðδÞŜðreiϑÞj0i. Here
the phase-space squeezing operator is defined as
Ŝðξ ¼ reiϑÞ ¼ exp½ð−ξâ†2 þ ξ�â2Þ=2� and j0i denotes
the oscillator ground state. Displaced squeezed states are
prepared experimentally by first cooling the motion of the
ion into a squeezed state jreiϑi ¼ ŜðreiϑÞj0i using reser-
voir engineering [53] and subsequently applying an oscil-
lating voltage to one of our trap electrodes resonant with
the ion’s motional frequency implementing the shift D̂ðδÞ.
Figure 2 shows the extracted characteristic function
obtained from two states with squeezing parameters rc¼
0.93�0.02 and ϑc ¼ 0 and displacements δc ¼ 0 [Figs. 2(a)
and 2(b)] and δc ¼ 0.78� 0.05 [Figs. 2(d) and 2(e)]. Here
and elsewhere in this manuscript quoted values with sub-
script c were either set to this value (no error bar) or

FIG. 1. Characteristic function readout of the oscillator state
jψosi. A carrier rotation R̂ðθ;ϕ ¼ 0Þ is applied to the internal
states initialized to j↑i, subsequently the oscillator is displaced by
D̂ð�β=2Þ, where the sign depends on the internal states in the X̂
basis (diamond symbol); finally, the internal states are readout.
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are values obtained from independent calibration
measurements [29].
The form of the measured results qualitatively follows

the expectation from theory [29]. For tomography in
general, a common approach would be to find the physi-
cally constrained characteristic function that is closest to
the measurement [54,55]. However identifying a suitable
basis set is nontrivial and appears rather indirect. As an
alternative, we instead look for the closest pure state which
might reproduce the data, using a model which takes
account of known sources of imperfection. We fit the
measurement data to the functional form

EðβÞ ¼ χðβÞð1 − jbjÞ þ b; ð4Þ

with χðβÞ as the expected characteristic function based on a
small set of parameters fζg, and b a bias parameter that
accounts for state-preparation and measurement errors of
the internal state (SPAM) [29]. In each case b and fζg are
floated. For pure displaced-squeezed states the character-
istic function is

χðβ; jδ; reiϑiÞ ¼ e−jβ coshðrÞþβ�eiϑ sinhðrÞj2=2eβδ�−β�δ ð5Þ

and fζg ¼ fδ; r; ϑg.
We rate the quality of the fit based on a standard reduced

chi-squared function cr¼1=ðN−νÞPN
i¼1½χðβiÞ−EðβiÞ�2=σ2i

where ν denotes the number of fitting parameters, N the
total number of measurements, χðβiÞ the measurement
result at the phase-space point βi, and σi the standard error
on the mean (s.e.m.) of each point. For the (displaced)
squeezed vacuum states the fitted parameters yield
(cr ¼ 1.07) cr ¼ 1.09, which is a significant improvement
over the values (cr ¼ 1.78), cr ¼ 1.82 obtained using the
independently calibrated values. For both states the fit
revealed a small tilt ϑ ¼ 0.044� 0.002 together with a
discrepancy in the shift jIm½δ�j ¼ 0.149� 0.006. In addi-
tion a bias b ¼ 3.05� 0.07% was found, which was
explained due to poorly calibrated internal-state preparation
for this data set. Quoted values above denote the average of
the fitted parameters for the two states. A complete list of
all parameters can be found in Table I of the Supplemental
Material [29]. The tilt ϑ is only visible in the large data set
and indicates the potential for improving the SDF and
squeezed state phase calibration in the future. The cause of
the small shift along the imaginary axis is currently unclear.
To obtain a Wigner function for our states, we perform

the discrete version of the Fourier transform (DFT) given in
Eq. (2) with l ¼ 0. Prior to the DFT, we remove the bias b
and zero pad the data outside the measurement range, and
additionally resample the data on an equidistant grid.
Results are shown in Figs. 2(c) and 2(f), respectively.
The numerical errors occurring due to the additional data
processing can be estimated using sampling of ideal states
[29]. The average magnitude of the discrepancy over all
sampled points of the Wigner function is found for the
states above to be 0.29%. Comparison of the Wigner and
characteristic functions show for both states that these
quantities exhibit a smaller extent and hence a reduced
uncertainty along ReðγÞ versus ImðγÞ. However the dis-
placement D̂ðδÞ has different effects, shifting the Wigner
function while appearing in the characteristic function as an
oscillation of the function in the direction perpendicular to
the shift. The latter is due to geometric phases D̂ðβÞD̂ðδÞ ¼
exp½ðβδ� − β�δÞ=2�D̂ðδþ βÞ which occur when displace-
ment operators are combined.
Displaced and squeezed states belong to the category of

Gaussian oscillator states [56,57]. Non-Gaussian states, for
example “Schrödinger’s cat states” [14], can produce
negative values for the Wigner function, which makes its
interpretation as a probability density in phase-space
impossible. A cat state can be realized as a superposition
of two displaced squeezed states

jψosi ∝ D̂ðδÞ½D̂ð−α=2Þ þ D̂ðα=2Þ�jreiϑi; ð6Þ

(a)

(d) (e) (f)

(b) (c)

FIG. 2. Reconstruction of displaced squeezed oscillator states
jδ; reiϑi ¼ D̂ðδÞŜðreiϑÞj0i with rc ¼ 0.93� 0.02 and orienta-
tions chosen to be ϑc ¼ 0. (a)–(c) shows the squeezed vacuum
state with δc ¼ 0, while (d)–(f) reconstruct the displaced
squeezed state with δc ¼ 0.78� 0.05. The real and imaginary
readouts of the characteristic function (a) and (b), (d) and (e) show
measurement data, while the Wigner function (c) and (f) was
obtained performing the two-dimensional Fourier transform
given in Eq. (2).
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which we create using the circuit given in Fig. 1 with a
squeezed oscillator state as input and postselecting on the
measurement result [2,46]. Experimental reconstruction of
the characteristic function of such a superposition state with
αc ¼ 2.42� 0.01, rc ¼ 0.58� 0.02, ϑc ¼ δc ¼ 0 is shown
in Fig. 3. The acquisition time for this measurement was
≈ 6 h, which includes repeated recalibration of the SDF
Rabi frequency Ω. Both the duration of the SDF used for
the preparation of the cat state as well as during the analysis
were updated accordingly. This leads to additional fluctua-
tions on the input state preparation due to the calibration
accuracy, when compared to shorter experiments. We again
fit the measurement data to the expected analytic functional
form [29], including the bias b, and obtain a reduced chi
squared of cr ¼ 1.40, which is a reduction relative to that
of the calibrated values cr ¼ 1.71. The fit parameters
Re½α� ¼ 2.396� 0.004, r ¼ 0.543� 0.005 are close to
the calibrated values. A substantially smaller shift jδj ¼
0.04� 0.01 and bias b ¼ 0.9� 0.1% was obtained in this
case compared to the displaced-squeezed states. However
the tilt ϑ ¼ 0.110� 0.007 increased.
The intrinsic quantum mechanical feature of the cat state

is given by the stable phase relation between the differently
displaced parts. For the ideal calibrated state with δc ¼ 0
this is often confirmed by measuring the value of the parity
ideally given by hP̂i ¼ 1 where P̂ ≡ ð−1Þâ†â [36]. This is
closely related to the value of the Wigner function at the
origin and thus to the integral of the characteristic function
over the full space

hP̂i ¼ π

2
Wð0Þ ¼ 1

2π

Z
Re½ χðβÞ�d2β: ð7Þ

Performing the Fourier transform of the characteristic
function measurements as above gives a parity of

hP̂i ¼ 0.98 (we find the numerical-analysis DFT error in
this case to be 0.70%, see [29]). In this estimation the bias
due to SPAM plays an important role. Without removing
the fitted value of b ¼ 0.9� 0.1% from all data we find a
value of hP̂i ¼ 0.90. This example shows that any constant
offset in the data leads to large error in a measurement of
the parity. It is worth noting that the close similarity
between the characteristic function and the Wigner function
for the squeezed-cat state superposition is misleading. The
oscillation in the Wigner function along the imaginary axis
indicate the presence of a stable phase relation between the
two displaced components. In contrast the oscillations
along the imaginary axis in the characteristic function
would be identical for the mixture ρmix ∝ jα=2; ξihα=2; ξjþ
j−α=2; ξih−α=2; ξj. In case of the characteristic function
the phase relation is confirmed by the peaks at Re½β� ¼ �α,
which in contrast to the parity measurement only requires a
single readout.
After testing the characteristic function method we tackle

partial reconstruction of a three-component superposi-
tion jψosi ∝ D̂ðδÞ½D̂ð−lÞ þ 2 · 1þ D̂ðlÞ�jreiϑi with lc ¼
2.50� 0.05 and rc ¼ 0.93� 0.03, δc ¼ ϑc ¼ 0, which is
an approximate GKP code state [17,58]. Figure 4 shows the
characteristic function measurement results. In this case
only the positive quadrant of the real part was measured,
which is indicated by the dashed box in Fig. 4(a).
From these measurements the parity is estimated to be
hP̂i ≈ 0.95� 0.02 with the error bar denoting the error due

(a) (b)

(c)

FIG. 3. Squeezed cat state reconstruction ½D̂ð−α=2Þ þ
D̂ðα=2Þ�jreiϑi with αc ¼ 2.42� 0.01, rc ¼ 0.58� 0.02. The
real and imaginary part of the characteristic function measure-
ment are given in parts (a) and (b) while part (c) shows theWigner
function found via DFT.

(a)

(c)

(e) (f)

(b)

(d)

FIG. 4. Reconstruction of a three component superposition
state D̂ðδÞ½D̂ð−lÞ þ 2 · 1þ D̂ðlÞ�jreiϑi. The state was calibrated
to lc ¼ 2.50� 0.05, rc ¼ 0.93� 0.03 and δc ¼ ϑc ¼ 0. In order
to reduce experimental run time only the positive quadrant of
Re½ χðβÞ� was measured, indicated by the dashed box in (a). This
was combined with three mirrored versions of itself to visualize
the full state. (b) Shows the Wigner function obtained via DFT. In
(c)–(f) we confirm the symmetries of the state with scans along
the complete axes Re½ β� and Im½ β�. Errors are given as s.e.m. We
overlay results of the negative axis (blue) with results of the
positive axis (red) by plotting measurements as a function of jβj.
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to the uncertainty in b. This is close to 1 and thus constrains
the value of the imaginary part to be close to zero throughout.
The expected symmetries of the state are additionally
confirmed by measuring the full imaginary and real
phase-space axes, results are shown in Figs. 4(c)–4(f),
respectively. The measurements confirm that the essential
information about the reconstructed state is captured by the
positive quadrant. Figure 4(e) however shows a small
systematic close to zero, which only partially follows the
expected odd symmetry of Im½ χ�. This might be due to small
uncontrolled and partially fluctuating displacements of the
state from the origin δ. Figure 4(b) shows the Wigner
function obtained using a DFT. In this case we obtain an
average expected error from the numerical analysis of 0.45%.
For theGKP state a fit using Eq. (4) obtains a reduction of the
reduced chi square to cr ¼ 1.58 compared to cr ¼ 2.05 for
the calibrated values. The primary discrepancy between
calibration and fit is again a tilt of the squeezing direction
ϑ ¼ 0.103� 0.008. All other parameters are within the
calibration error bars [29].
We have implemented direct, simple, and versatile

reconstruction of the symmetric characteristic function
and demonstrated its capabilities by analyzing displaced
squeezed states and superpositions of these states. We
focused our discussion on potential improvements of exper-
imental control based on the large reconstruction data set
revealing discrepancies between calibrations and fits.
However it is alsoworth pointing out that these discrepancies
are small: the square fidelities between calibrated and fitted
pure states are above 0.98 for all four analyzed states
including the GKP code word [29]. Possible extensions of
this work include extracting the values of hni, g2ð0Þ,
hâ†mâniS from a few measurement settings made close to
the origin. This requires numerical techniques optimized for
estimating derivatives from a sparsely sampled noisy signal
[59–61]. Other extensions include the use of optimized
sampling patterns [1,62] and the use of feedback to improve
the quality of state preparation. The basic idea of utilizing
qubit state-dependent shifts for reconstruction of a bosonic
degree of freedom is applicable to a wide variety of spin-
boson systems. For example, in parallel work on GKP states
[58] characteristic function reconstructions were used for a
microwave cavity with a weak dispersive interaction.
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