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A quantity known as the contact is a fundamental thermodynamic property of quantum many-body
systems with short-range interactions. Determination of the temperature dependence of the contact for the
unitary Fermi gas of infinite scattering length has been a major challenge, with different calculations
yielding qualitatively different results. Here we use finite-temperature auxiliary-field quantumMonte Carlo
(AFMC) methods on the lattice within the canonical ensemble to calculate the temperature dependence of
the contact for the homogeneous spin-balanced unitary Fermi gas. We extrapolate to the continuum limit
for 40, 66, and 114 particles, eliminating systematic errors due to finite-range effects. We observe a
dramatic decrease in the contact as the superfluid critical temperature is approached from below, followed
by a gradual weak decrease as the temperature increases in the normal phase. Our theoretical results are in
excellent agreement with the most recent precision ultracold atomic gas experiments. We also present
results for the energy as a function of temperature in the continuum limit.
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Introduction.—The unitary Fermi gas (UFG) describes a
system of spin-1=2 particles with a short-range interaction
and a diverging s-wave scattering length a, which saturates
the upper bound on the modulus of the scattering amplitude
imposed by the unitarity condition. The UFG is of interest
for understanding the properties of other systems such as
high-Tc superconductors [1,2] and nuclear matter [3,4], and
has been realized experimentally with 6Li and 40K ultracold
atomic Fermi gases [5–7]. Its quantitative understanding
presents a challenge to theorists and experimentalists.
The contact C is of fundamental importance in quantum

many-body systems with short-range interactions. It
describes the short-range correlations of particles of oppo-
site spin and is defined by

Z
d3Rgð2Þ↑;↓ðRþ r=2;R − r=2Þ ∼

r→0

C
ð4πrÞ2 ; ð1Þ

where gð2Þ↑;↓ðr↑; r↓Þ ¼ hn̂↑ðr↑Þn̂↓ðr↓Þi is the pair correlation
function, and n̂szðrÞ the density of particles at position r
with spin projection sz ¼ ↑;↓. Several exact relations
involving the contact, known as Tan’s relations, were
derived in Refs. [8–10]. In particular, the contact character-
izes the high-momentum tail of the normalized momentum
distribution nszðkÞ through the relation nszðkÞ ∼

k→∞
C=k4,

where k is the wave number and the distribution is
normalized with Nsz ¼

R ½d3k=ð2πÞ3�nszðkÞ (Nsz being
the total number of particles with spin projection sz) [8].
The contact also characterizes the high-frequency tail of the
shear viscosity spectral function [11,12]. It can be
expressed in terms of the adiabatic derivative (at constant

entropy S) of the thermal energy E with respect to the
inverse scattering length [9]

C ¼ 4πm
ℏ2

∂E
∂ð−1=aÞ

����
S
: ð2Þ

Other relations involving the contact were introduced in
Refs. [13–28]; see Ref. [29] for a review.
Tan’s relations were verified experimentally in the

ultracold atomic gas experiments of Refs. [30,31].
Subsequently, the temperature dependence of the contact
for the UFG was measured in a trap [32], and for the
homogeneous system [33]. Reference [33] observed a sharp
decrease in the contact as the temperature is lowered below
the superfluid critical temperature Tc. Recently, two inde-
pendent precision experiments [34,35] measured the tem-
perature dependence of the contact across the superfluid
phase transition. The experiments agree well with each
other and show a dramatic increase in the contact as the
temperature is lowered below Tc.
Calculating the temperature dependence of the contact

for the UFG has proved challenging, and published results
differ widely [12,12,36–40]. This is not surprising given
that many of the theoretical results were derived using
uncontrolled approximations. However, two recent works
[39,40] rely on methods that have, in principle, controlled
errors. Reference [39] used a diagrammatic Monte Carlo
approach on a lattice [41] both in the superfluid and normal
phases. Reference [40] used the bold diagrammatic
Monte Carlo method [42] in the normal phase only.
Here we use an improved finite-temperature auxiliary-

field quantum Monte Carlo (AFMC) [43] method on a

PHYSICAL REVIEW LETTERS 125, 043402 (2020)
Editors' Suggestion

0031-9007=20=125(4)=043402(6) 043402-1 © 2020 American Physical Society

https://orcid.org/0000-0002-6576-2204
https://orcid.org/0000-0001-9889-4839
https://orcid.org/0000-0002-2176-4881
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.043402&domain=pdf&date_stamp=2020-07-22
https://doi.org/10.1103/PhysRevLett.125.043402
https://doi.org/10.1103/PhysRevLett.125.043402
https://doi.org/10.1103/PhysRevLett.125.043402
https://doi.org/10.1103/PhysRevLett.125.043402


spatial lattice to calculate the temperature dependence of
the contact across the superfluid transition for 40, 66, and
114 particles. Our AFMC method works in the canonical
ensemble and uses an algorithm we recently introduced
[44–46] that enables calculations for much larger lattices
than would otherwise be feasible. For each of these particle
numbers, we extrapolate to the continuum limit, eliminat-
ing systematic errors due to a finite filling factor
(or equivalently finite effective range re [47]).
Our calculations of the contact are in remarkable agree-

ment with the recent precision experiments of Refs. [34,35]
both below and above Tc. Compared with available
theoretical results for the contact, our calculations provide
the best quantitative agreement with these experimental
results across the superfluid phase transition. The
temperature dependence we find is qualitatively similar
to that found in the diagrammatic Monte Carlo approach
[39] at temperatures below the critical temperature
T ≲ Tc ≃ 0.15TF (where TF is the Fermi temperature),
but exhibits a different behavior above Tc. The behavior we
find for T > Tc is similar to that of the bold diagrammatic
Monte Carlo method [40], but is systematically lower.
We also calculate the temperature dependence of the

thermal energy in the continuum limit for 40 and 66
particles, and compare it with the experimental results of
Ref. [48]. Taking the zero-temperature limit of the thermal
energy, we estimate the Bertsch parameter (measuring the
ground-state energy in units of the free Fermi gas energy) to
be ξ ¼ 0.367ð7Þ, in agreement with the experimental
value ξ ¼ 0.376ð5Þ.
Lattice formulation.—We discretize space with a cubic

lattice of linear size L ¼ NLδx, where δx is the lattice
spacing. We use periodic boundary conditions and take a
zero-range interaction of strength V0, i.e., V ¼ V0δðr − r0Þ.
The corresponding lattice Hamiltonian is

Ĥ ¼
X
k;sz

ϵkâ
†
k;sz

âk;sz þ g
X
x

n̂x;↑n̂x;↓; ð3Þ

where g ¼ V0=ðδxÞ3 is the coupling constant determined
by

1

V0

¼ m
4πℏ2a

−
Z
B

d3k
ð2πÞ32ϵk

ð4Þ

to produce the given scattering length a on the lattice
(a → ∞ for the UFG). The integral over the wave vector k
is restricted to the first Brillouin zone B of the reciprocal
lattice in momentum space of a spatial cubic lattice
x ¼ ðnx; ny; nzÞδx, ni ∈ f−M;−M þ 1;…;Mg, where
M ¼ ðNL − 1Þ=2 (we use odd NL). The operators â†k;sz
and âk;sz are, respectively, the creation and annihilation
operators of a particle with wave vector k and spin
projection sz ¼ ↑;↓ obeying fermionic anticommutation
relations fâ†k;sz ; âk0;s0zg ¼ δk;k0δsz;s0z . The operator n̂x;sz ¼
ψ̂†
x;sz ψ̂x;sz is the number operator of particles at lattice site x

with spin projection sz, where ψ̂†
x;sz and ψ̂x;sz are

the creation and annihilation operators satisfying
fψ̂†

x;sz ; ψ̂x0;sz 0g ¼ δx;x0δsz;sz 0 . Here we use a quadratic sin-
gle-particle dispersion relation ϵk ¼ ℏ2k2=2m. In the
Supplemental Material [49] we show that dispersion
relations used in other works [39,41,54–56] lead to similar
results after extrapolation to the continuum limit.
For a given lattice size N3

L and particle number N, there
is a systematic error that arises from the finite lattice filling
factor ν ¼ N=N3

L, and an extrapolation ν → 0 is necessary
to obtain the continuum limit for the given particle number.
In the limit of low filling factor, the many-body energies
scale as ν1=3 [41,47,57]. We therefore use a linear fit in ν1=3

for our low-filling-factor simulations to extract the con-
tinuum results. The thermodynamic limit is then
approached for large values of N.
Improved AFMC algorithm.—For the large lattice cal-

culations, we employed an improved AFMC algorithm in
which the calculation at finite temperature scales more
gently than the usual OðN3

sÞ, where Ns ¼ N3
L. At the

temperatures of interest, and for a given auxiliary-field
configuration, only a relatively small number Nocc of
significantly occupied single-particle states contribute to
the observables; the remaining states can be omitted with a
controllable error that can be made arbitrarily small. The
calculation of the partition function in the occupied space
then scales as OðN2

occNsÞ, though with an OðN2
sÞ calcu-

lation to determine Nocc. Typically we find that Nocc is a
small multiple (∼2–4) of the number of particles N, so that
the overall computational time for large lattices is reduced
dramatically. This method was discussed and used in
Refs. [44,45], and is described in detail in Ref. [46].
Results.—We performed AFMC simulations in the

canonical ensemble as described in Ref. [45]. The simu-
lations are carried out for N ¼ 40, 66, and 114 particles, on
lattices of size N3

L ¼ 53; 73; 93; 113; 133, and 153. We
divide the inverse temperature β ¼ 1=kBT (kB is the
Boltzmann constant), into discrete time slices of length
Δβ (using the Trotter product for the propagator e−βĤ) and
perform the simulations for several values of Δβ. We then
extrapolate to the limit Δβ → 0 using the quadratic Δβ
dependence that characterizes the symmetric Trotter
decomposition, thus removing the systematic error intro-
duced by the finite Δβ. Results for multiple lattice sizes N3

L
for a given particle number N are used to extrapolate to the
continuum limit ν → 0 (see the Supplemental Material [49]
for detailed extrapolation results). In the following we
discuss results for two measurable thermal observables: the
contact and the thermal energy.
(i) Contact: The expression (2) for the contact can also be

written as

C ¼ 4πm
ℏ2

∂F
∂ð−1=aÞ

����
T
; ð5Þ
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where F is the free energy and the derivative is evaluated at
constant temperature T. In the lattice formulation the
contact can then be calculated from

C ¼ m2V0hV̂i
ℏ4

; ð6Þ

where hV̂i is the thermal expectation value of the potential
energy V̂ ¼ g

P
x n̂x;↑n̂x;↓. In Fig. 1 we show our AFMC

results for the temperature dependence of the contact C
calculated from Eq. (6) in the continuum limit in units of
NkF for N ¼ 40 particles (solid blue squares). The temper-
ature T is expressed in units of the Fermi temperature
TF ¼ εF=kB, where εF ¼ ðℏ2=2mÞð3π2ρÞ2=3 is the Fermi
energy for a free gas of density ρ ¼ ν=ðδxÞ3. Our results are
in excellent agreement with the recent experimental results
of the Swinburne group [34] (solid purple diamonds) and of
the MIT group [35] (solid red up triangles), both above and
below the critical temperature Tc.
We also compare our results with the theoretical calcu-

lations of Refs. [12,36,38–40,58,60–62] and the low-
temperature experimental result of Ref. [59].
Our results for the contact show similar qualitative

behavior to those of the lattice diagrammatic
Monte Carlo method of Ref. [39] (open gray diamonds)
in the low-temperature regime, but have markedly different
qualitative behavior for T > Tc. Our results above Tc are

more consistent with the bold diagrammatic Monte Carlo
results of Ref. [40] (open black circles), but are system-
atically lower.
In Fig. 1, we also compare our AFMC results for the

contact with those of Ref. [12] (solid pink line), where good
overall qualitative agreement is seen for the entire temper-
ature range. This is somewhat surprising since the work of
Ref. [12] used the Luttinger-Ward approach, which con-
tains uncontrolled systematic errors. However, this method
has been shown to produce reliable results for other
observables of the UFG [45,63]. Quantitatively, our results
are above those of Ref. [12] at low temperatures, and
significantly below them for T > Tc.
Reference [37] used an AFMC approach similar to the

current work but in the grand-canonical ensemble, and
extracted the contact above Tc from the tail of the
momentum distribution at a finite filling factor. The
calculated temperature dependence of the contact in
Ref. [37] differs substantially from our results. As shown
in Fig. 3 of the Supplemental Material [49], the contact is
very sensitive to the filling factor, particularly at temper-
atures T > Tc, and the continuum extrapolation leads to
qualitatively different results.
We tested our continuum extrapolations by comparing

the results of different dispersion relations for the single-
particle energy. For a finite filling factor ν the contact
depends on the dispersion relation, but similar results

1.75

2

2.25

2.5

2.75

3

3.25

3.5

0 0.15 0.3 0.45 0.6 0.75 0.9

C
/(

N
k F

)

T/TF

3rd virial
2nd virial

T=0 QMC [58]
t-matrix [36]

LW [12]
BDMC [40]
LDMC [39]

Exp [59]

MIT [35]
Swinburne [34]

AFMC, N=114
AFMC, N=66
AFMC, N=40

2

2.5

3

3.5

0.1 0.2 0.3 0.4

C
/(

N
k F

)

T/TF

FIG. 1. The contact C (in units ofNkF) of the UFG as a function of temperature T (in units of TF). Our AFMC results in the continuum
limit for N ¼ 40 particles (solid blue squares) are compared with the recent experimental results of the Swinburne group [34] (solid
purple diamonds) and the MIT group [35] (solid red up triangles). We also compare with other theoretical results: the lattice
diagrammatic Monte Carlo (LDMC) results of Ref. [39] (open gray diamonds), the bold diagrammatic Monte Carlo (BDMC) results of
Ref. [40] (open black circles), the Luttinger-Ward (LW) results of Ref. [12] (solid pink line), and the t-matrix result of Ref. [36] (dotted
purple line). We also show the T ¼ 0 quantum Monte Carlo results of Ref. [58] (open purple square) and the low-temperature
experimental result of Ref. [59] (solid black down triangle). The second-order and third-order virial expansions for the contact are
shown, respectively, by the dashed-dotted red line and dashed blue line. Virial coefficients were calculated in Refs. [38,60–62]. The inset
shows our continuum limit AFMC results for several particle numbers: N ¼ 40 (solid blue squares), N ¼ 66 (solid orange circles), and
N ¼ 114 (solid green down triangles).
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should be obtained in the limit ν → 0. In Fig. 5 of the
Supplemental Material [49], we show the contact for
multiple dispersion relations for N ¼ 40 particles at
T=TF ≃ 0.24 and demonstrate that they extrapolate to
similar values (within statistical errors) in the continuum
limit. In the comparison we use a quadratic dispersion (the
one implemented in our calculations), the hopping
dispersion ϵðhÞk ¼ ðℏ2=mδx2Þ½3 −P

i cosðkiδxÞ� (used in
Ref. [39]), and the dispersion ϵð3Þk ¼ ðℏ2k2=2mÞ
½1 − αðkδx=πÞ2� with α ¼ 0.257022 [56].
The inset of Fig. 1 shows the continuum contact results

for N ¼ 40, 66, and 114 particles. The results for N ¼ 66
and 114 particles show little systematic difference from the
N ¼ 40 particle results, although the latter have smaller
statistical errors. This suggests that our results for the
contact are close to the thermodynamic limit.
Our calculations are limited to T ≲ 0.45TF. Large lattice

simulations with lower filling factors are necessary to
determine the contact at higher temperatures up to
T=TF ≈ 1, where a meaningful comparison with the virial
expansion results can be made.
(ii) Thermal energy: We also calculated the thermal

energy E ¼ hĤi of the UFG (in units of the zero-temper-
ature free Fermi gas energy EFG ¼ 3

5
NεF) as a function of

temperature T (measured in units of the Fermi temperature
TF). In Fig. 2 we show our AFMC results for E=EFG as a
function of T=TF in the continuum limit for N ¼ 40 (solid
squares) and N ¼ 66 (solid circles) particles. We compare
our results with the experimental results of Ref. [48] (open

circles), the AFMC results of Ref. [64] (open squares) and
the zero-temperature quantum Monte Carlo result of
Ref. [56] (open triangle).
In the high-temperature regime we find good quantitative

agreement between our results and those of Refs. [48] and
[64]. Below Tc ≃ 0.15TF, the AFMC results of Ref. [64]
are systematically above our results. This is anticipated
since the results of Ref. [64] were calculated at a finite
filling factor of ν ≃ 0.040–0.045 (corresponding to a non-
negligible effective range parameter kFre ≃ 0.36 for the
quadratic dispersion relation), while here we use a con-
tinuum extrapolation to remove the systematic error asso-
ciated with a finite filling factor. Compared with the
experimental results of Ref. [48], our results are system-
atically lower below Tc.
We can use our low-temperature results to extract the

Bertsch parameter ξ defined by EðT ¼ 0Þ ¼ ξEFG. Taking
an average of its values for our lowest two temperatures and
for both 40 and 66 particles, we find ξ ¼ 0.367ð7Þ. In
Table I we compare values of ξ determined from recent
experimental and theoretical works. Our result is in agree-
ment with the value ξ ¼ 0.372ð5Þ found in the N ¼ 66
ground-state Monte Carlo calculation of Ref. [56], and with
the lattice Monte Carlo result ξ ¼ 0.366þ0.016

−0.011 of Ref. [65].
Our value for ξ also agrees with the experimental value
ξ ¼ 0.376ð5Þ of Ref. [48].
Conclusions.—We carried out canonical-ensemble lat-

tice AFMC simulations for the UFG for N ¼ 40, 66, and
114 particles using an improved AFMC algorithm. Our
results for each particle number include extrapolations to
the continuum limit of zero filling factor ν → 0, thus
eliminating systematic errors due to finite-range effects.
In particular, we calculated the temperature dependence of
the contact across the superfluid phase transition, and found
excellent agreement with the recent experimental results of
Refs. [34,35]. Compared with previous calculations of the
temperature dependence of the contact, our AFMC results
provide the best quantitative agreement with these recent
experimental results.
It would be interesting to apply our methods to determine

the continuum limits of other thermodynamic observables
of the UFG and use them as benchmarks for various
theoretical methods.
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FIG. 2. AFMC thermal energy E (in units of the Fermi gas
ground-state energy EFG) as a function of temperature T (in units
of the Fermi temperature TF) for the UFG obtained in the
continuum limit for N ¼ 40 particles (solid blue squares) and
N ¼ 66 particles (solid orange circles). We compare with the
experimental results of Ref. [48] (open black circles), and with
the AFMC results of Ref. [64] (open blue squares). Using our
lowest temperature results, we estimate the Bertsch parameter to
be ξ ¼ 0.367ð7Þ (solid red circle), in close agreement with the
ground-state quantum Monte Carlo estimate ξ ¼ 0.372ð5Þ of
Ref. [56] (open green triangle). The inset shows the low-temper-
ature regime.

TABLE I. Various estimates of the Bertsch parameter ξ.

Method ξ Error

Fixed-node diffusion Monte Carlo [66] 0.42 0.01
Duke experiment [67] 0.39 0.02
ENS experiment [68,69] 0.41 0.01
Ground-state fixed-node Monte Carlo [70] ≤ 0.383 0.001
Ground-state AFMC [56] 0.372 0.005
MIT experiment [48] 0.376 0.005
Lattice quantum Monte Carlo [65] 0.366 þ0.016

−0.011
AFMC (this work) 0.367 0.007
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