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Large N matrix quantum mechanics is central to holographic duality but not solvable in the most
interesting cases. We show that the spectrum and simple expectation values in these theories can be
obtained numerically via a “bootstrap” methodology. In this approach, operator expectation values are
related by symmetries—such as time translation and SUðNÞ gauge invariance—and then bounded with
certain positivity constraints. We first demonstrate how this method efficiently solves the conventional
quantum anharmonic oscillator. We then reproduce the known solution of large N single matrix quantum
mechanics. Finally, we present new results on the ground state of large N two matrix quantum mechanics.
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Introduction.—Large N matrices are at the heart of the
holographic emergence of semiclassical, gravitating space-
time geometry [1]. In matrix quantum mechanics geometry
emerges from an underlying theory with no built in locality.
The simplest such theory is the single matrix quantum
mechanics description of two-dimensional string theory
[2], while the richest are the maximally supersymmetric
multimatrix theories of BFSS [3] and BMN [4]. There are
many theories in between, with varying numbers of
matrices and degrees of supersymmetry [5]. Thus far, only
the single matrix quantum mechanics has proved solvable
at large N [6].
Nonzero temperature Monte Carlo studies of large N

multimatrix quantum mechanical systems have success-
fully captured aspects of a known dual spacetime in
supersymmetric theories [7–10]. Substantial Monte Carlo
studies have also been performed for nonzero temperature
bosonic multimatrix theories, e.g., Refs. [11,12]. However,
recent work increasingly suggests that the quantum struc-
ture of holographic quantum states—revealed, for instance,
in their entanglement [13–16]—plays a central role in the
emergence of space. It therefore behooves us to find
methods suitable for studying the zero temperature quan-
tum states of multimatrix quantum mechanics directly.
Progress was made recently in this direction by using a
neural network variational wave function [17]. Here we
describe a different approach.
Our work is directly inspired by a recent beautiful paper

by Lin [18], with a similar approach also being employed in
Ref. [19]. Lin’s paper studied large N matrix integrals,

which is an easier problem than large N quantum mechan-
ics but shares important features. Positivity constraints and
relations between correlation functions were shown to
efficiently produce strong numerical bounds on correlation
functions of matrix integrals. In the following we will show
how this methodology can be adapted to the quantum
mechanical problem.
Bootstrapping the quantum anharmonic oscillator.—We

first illustrate the approach with a warm-up example of a
quantum anharmonic oscillator, with Hamiltonian

H ¼ p2 þ x2 þ gx4: ð1Þ
Here ½p; x� ¼ −i. Figure 1 below shows the results for this
case: strong constraints on the energy E and expectation
value hx2i of the ground state and first excited state.
The first step is to relate the expectation values of

different operators. We will obtain the recursion relation
in Eq. (6) below. In energy eigenstates, for any operator O,

h½H;O�i ¼ 0: ð2Þ
For example, let O ¼ xp. Equation (2) is then the Virial
theorem, h2p2i ¼ h2x2 þ 4gx4i. The energy is therefore

E ¼ 2hx2i þ 3ghx4i: ð3Þ

More systematically, take O ¼ xs and O ¼ xtp in
Eq. (2) for integers s, t ≥ 0. Commuting the operators x,
p with the identity ½p; xr� ¼ −irxr−1 and eliminating the
terms with a single p operator, we arrive at the relation

4thxt−1p2i ¼ 8ghxtþ3i þ 4hxtþ1i − tðt − 1Þðt − 2Þhxt−3i:
ð4Þ

In this single particle case is there is a strengthened
version of Eq. (2): hOHi ¼ EhOi. We emphasize Eq. (2)
instead because, as we will see later, it is more useful in the
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matrix case. Nonetheless, in the present anharmonic oscil-
lator example, take O ¼ xt−1, so that

hxt−1p2i ¼ Ehxt−1i − hxtþ1i − ghxtþ3i: ð5Þ

Plugging Eq. (5) into Eq. (4) gives a recursive relation
between expectation values of powers of x:

4tEhxt−1i þ tðt − 1Þðt − 2Þhxt−3i
− 4ðtþ 1Þhxtþ1i − 4gðtþ 2Þhxtþ3i ¼ 0; ð6Þ

where E is given by Eq. (3). Also we know that hx0i ¼ 1
and hxti ¼ 0 if t is odd, so all expectation values of xt can
be computed from E and hx2i with Eq. (6).
With the recursion relation (6) at hand we move onto the

second step. We wish to solve for E and hx2i, the only two
unknown variables, by bootstrapping. This step works as in
Ref. [18]. The basic positivity constraint is that

hO†Oi ≥ 0; ∀ O ¼
XK
i¼0

cixi; ð7Þ

which means that the matrixM of size ðK þ 1Þ × ðK þ 1Þ,
Mij ¼ hxiþji, should be positive semidefinite. The con-
straint becomes stronger as we increase K, thus enlarging
the space of trial operators. For a given K and test values of
E and hx2i, the Mij can be computed using the recursion

relation (6). The bootstrap consists of scanning over these
test values, computing the eigenvalues of the matrix M,
and thereby determining if positivity excludes the test
values as inconsistent.
The result is shown in Fig. 1. Even for moderate K the

values of E and hx2i are determined quite accurately. The
region of allowed values splits into a discrete set of islands.
These converge to the spectrum of the Hamiltonian in the
limit K → ∞ [20]. Higher energy states require more
constraints to be computed accurately.
One matrix quantum mechanics.—Now we generalize

the bootstrap method to matrix quantum mechanics at
N ¼ ∞. The momentum operators can no longer be
eliminated explicitly in favor of the energy, and we do
not use a closed form recursion relation for all expectation
values. However, the energy and expectation values of short
operators can still be efficiently constrained.
Consider the single-matrix quantum mechanics with

H ¼ trP2 þ trX2 þ g
N
trX4; ð8Þ

where P and X are N-by-N Hermitian matrices with
quantum commutators ½Pij; Xkl� ¼ −iδilδjk. The theory
(8) can be solved by mapping onto N free fermions [6].
The bootstrap reproduces this solution in Fig. 2.
Operator expectation values are related by symmetries.

In the following, denote hOi ¼ tr ρO. If the state ρ
commutes with the Hamiltonian then

h½H;O�i ¼ 0; ∀ O: ð9Þ

For example, ρ could be a pure energy eigenstate or a mixed
thermal state. Choosing O ¼ trXP,

2htrP2i ¼ 2htrX2i þ 4g
N

htrX4i: ð10Þ
The SUðNÞ symmetry of Eq. (8) has generators

G ¼ i½X;P� þ NI: ð11Þ

The final identity piece ensures that htrGi ¼ 0, with the
operator ordering ½X;P� ¼ XP − PX in Eq. (11). In gauged
matrix quantum mechanics, physical states must be invari-
ant under this symmetry. In particular,

htrGOi ¼ 0; ∀ Oij: ð12Þ

For example, htrGi ¼ 0 implies htrXPi − htrPXi ¼ iN2.
Combining this constraint with h½H; trX2�i ¼ 0 gives

htrXPi ¼ −htrPXi ¼ iN2

2
: ð13Þ

Cyclicity of the trace gives another set of relations
between operators. Commuting quantum operators may

FIG. 1. Bootstrap allowed region (shaded) for the anharmonic
oscillator (1) with g ¼ 1. Upper plot: the allowed region for
ðE; hx2iÞ near the ground state solution (marked by the red cross)
for different sizes of the bootstrap matrix K ¼ 7, 8, 9; lower plot:
the allowed region near the first excited state.
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be necessary in applying the cyclic formula. For example,
using large N factorization to leading order in N → ∞,

htrXP3i ¼ htrP3Xi þ 2iNhtrP2i þ ihtrPihtrPi: ð14Þ

Equations (9), (12), cyclicity of the trace, and reality
conditions hO†i ¼ hOi� generate all relations between
expectation values that we will use for the bootstrap.
As a mini-bootstrap example, consider trial operators I,

X, X2, and P. From the condition (7), the following
bootstrap matrix should be positive semidefinite:

I X2 X P

I htr Ii htrX2i 0 0

X2 htrX2i htrX4i 0 0

X 0 0 htrX2i htrXPi
P 0 0 htrPXi htrP2i:

ð15Þ

Trial operators are built from both X and P. The expectation
value for an odd number of matrices vanishes. Positivity of
Eq. (15) implies

htrX2i ≥ 0; NhtrX4i ≥ htrX2i2;

htrX2i
�
htrX2i þ 2g

N
htrX4i

�
≥
N4

4
; ð16Þ

where Eqs. (10) and (13) are used. The inequalities (16) are
the bootstrap constraints in this simple example. At g ¼ 0,
htrX2i ¼ 1

2
N2 and htrX4i ¼ 1

2
N3, so the last inequality in

Eq. (16) is saturated and the other two are not.
The bootstrap constraints become stronger as we include

more trial operators. First, take all possible strings of X and
P of length ≤ L, and write down the matrix analogous to
Eq. (15). This matrix must be positive semidefinite.
Second, regard each of the ∼22L entries in the matrix as
a variable (which is the expectation value of a single-trace
operator with length ≤ 2L), and write down the equalities
between them following from Eqs. (9), (12), cyclicity of the
trace, hO†i ¼ hOi� and that the expectation value of an odd
number of matrices vanishes. The technical implementation
of these constraints, as well as the minimization described
in the following paragraph, is detailed in Ref. [21].
Unlike in the single-particle case, we do not necessarily

require that the state be an energy eigenstate and the energy
E does not appear explicitly in the bootstrap constraints. At
infinite N the matrix quantum mechanics has a continuous
spectrum and therefore we proceed to use gradient descent
to minimize the energy in the allowed region of expectation
values. In this way we obtain a lower bound on the ground
state energy of the theory. The result is a lower bound
because certainly the true ground state energy is allowed,
and hence above the minimal allowed energy that we find.
In Fig. 2 we observe that the lower bound is very close to

the true ground state value, already for L ¼ 3, and other
observables, such as htrX2i, are also solved accurately.
Two matrix quantum mechanics.—One matrix quantum

mechanics are tractable analytically as one can diagonalize
the matrix. This is not the case for multimatrix quantum
mechanics. In the following we illustrate how bootstrap
methods can successfully be used for such theories,
focusing on a relatively simple two-matrix quantum
mechanics with a global Oð2Þ symmetry (in addition to
the large N gauge symmetry). The Hamiltonian is

H ¼ tr fP2
X þ P2

Y þm2ðX2 þ Y2Þ − g2½X; Y�2g; ð17Þ

with X and Y being N-by-N Hermitian matrices, with
conjugate momenta PX and PY , and m and g coupling
constants. This theory is not exactly solvable. An early
discussion of the massless (m ¼ 0) limit of the theory is
Ref. [25]. By rescaling the matrices we see that dimension-
less physical quantities can only depend on the ratio
m2=g4=3.
Imposing rotational invariance gives more relations

between observables. We expect the ground state to be
rotationally invariant. Rotations are generated by

S ¼ tr ðXPY − YPXÞ: ð18Þ

For states ρ with ½S; ρ� ¼ 0, including eigenstates of S,

FIG. 2. One matrix quantum mechanics bootstrap for the
Hamiltonian (8). L is the maximal length of trial operators.
Upper: The markers show the minimal energies allowed by the
bootstrap constraints, in comparison with the exact ground state
solution. Lower: the expectation values of trX2, for the minimal
energy parameters found in the upper plot.
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h½S;O�i ¼ 0; ∀ O: ð19Þ

Thus in the two matrix quantum mechanics, Eqs. (9), (12),
and (19), cyclicity of the trace, and hO†i ¼ hOi� will be
used to generate all equations between expectation values
that we will use. The bootstrap then proceeds in exactly the
same way as for the case of a single matrix, now with ∼42L
variables prior to imposing constraints. The results for
the ground state energy, htrX2 þ tr Y2i and htr ½X; Y�2i
are in Fig. 3. The Virial theorem relates these:
E0 ¼ 2m2htrX2 þ tr Y2i − 3g2htr ½X; Y�2i.
In order to corroborate the accuracy of the L ¼ 4 results,

we obtain rigorous upper and lower bounds on the true
ground state energy using a Born-Oppenheimer wave
function. We see in Fig. 3 that the L ¼ 4 bootstrap results
indeed lie within a narrow window allowed by these
bounds. We briefly describe the wave function in the
following paragraph, with details given in Ref. [21].

As further evidence that the L ¼ 4 bootstrap results are
close to convergence, we compare our results to
existing low temperature Monte Carlo simulations of the
massless theory. At large g, E0=N2 ≈ 1.40ðNg2Þ1=3 þ
1.01m2=ðNg2Þ1=3 from data in Fig. 3. The factor of 1.40
agrees precisely with the Monte Carlo result in Ref. [26],
corresponding to the value of 0.70 in the conventions of that
paper. An analogous fit gives the leading order behavior
htrX2 þ tr Y2i=N2 ≈ 1.22=ðNg2Þ1=3. The numerical factor
here is close to the Monte Carlo result of 1.15 in Ref. [26].
The SUðNÞ gauge invariance allows us to diagonalize

one of the two matrices, say X. Let the eigenvalues be xi.
The Hamiltonian for the entries yij of the remaining
matrix is a sum of harmonic oscillators, with frequencies
ω2
ij ¼ m2 þ g2ðxi − xjÞ2. We can therefore write down a

Born-Oppenheimer wave function in which these oscilla-
tors are placed in their ground state:

ΨðX; YÞ ¼ ψðxiÞ
YN
i;j¼1

ð2ωij=πÞ1=4e−1
2
ωijjyijj2 : ð20Þ

That is, the yij are treated as “fast” compared to the
eigenvalues xi. Born-Oppenheimer wave functions lead
to both upper and lower bounds on the ground state energy.
The upper bound follows from treating the wave function as
a variational ansatz. The lower bound is obtained by finding
the ground state of the eigenvalues in an effective potential
due to the zero point energy of the yij oscillators. The
advantage of the form (20) is that computing the upper and
lower bounds reduces to a solvable single-matrix large N
eigenvalue problem. In Fig. 3 we see that the bounds
following from the wave function (20) turn out to be
remarkably tight.
From the results in Fig. 3 one can verify that the ratio

Ntr ½X; Y�2=ðtrX2Þ2 tends to a nonzero constant at large
Ng2. This means that the matrices do not commute in this
limit. This can be contrasted with the analogous two matrix
integral, with no time, that does become commuting at
large Ng2 [27]. This is consistent with the fact that the two
matrix integral diverges in the massless limit [28,29], as the
eigenvalues spread far apart along the classically flat
directions of the potential due to commuting matrices,
while the massless matrix quantum mechanics still has a
discrete spectrum of normalizable states [30].
Final comments.—In summary, we have introduced a

systematic numerical method to obtain energies and expect-
ation values of the large N matrix quantum mechanics
states. The method involves establishing relationships
between expectation values and then imposing positivity
of a certain matrix of expectation values, in the spirit of
[18]. In Fig. 2 we see that the known analytic results for
one-matrix large N quantum mechanics are readily repro-
duced. In Fig. 3 we have obtained new results for the

FIG. 3. Minimal energy configuration in the bootstrap allowed
region for L ¼ 3, 4. The gray dashed curves are rigorous lower
and upper bounds of the ground state energy from the Born-
Oppenheimer approximation. In the plots we have set m ¼ 1.
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ground state energy and expectation values of a two matrix
large N quantum mechanics.
The extension to more matrices should be possible with

increased computing power or perhaps by optimizing the
algorithm. Looking at supersymmetric states in supersym-
metric theories may allow for stronger relationships
between expectation values, using the supersymmetry
generators. Both more matrices and supersymmetry will
of course be necessary to tackle the full blown theories of
Banks, Fischler, Shenker, and Susskind [3] and Berenstein,
Maldacena, and Nastase [4]. Finally, extensions to the
Gibbs states (or, to high energy eigenstates) may allow
nonzero temperature quantum physics to be accessed with
our bootstrap methods. This could give an alternative probe
of the thermal phase transitions studied via Monte Carlo
simulations in, e.g., Refs. [11,12], as well as a new window
into black hole microstates.
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No. de-sc0018134 and by a Simons Investigator Grant.

[1] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).
[2] I. R. Klebanov, in String Theory and Quantum Gravity '91,

Proceedings of the Trieste Spring School and Workshop
(World Scientific, 1991), pp. 30–101.

[3] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, Phys.
Rev. D 55, 5112 (1997).

[4] D. E. Berenstein, J. M. Maldacena, and H. S. Nastase,
J. High Energy Phys. 04 (2002) 013.

[5] B. de Wit, Nucl. Phys. B, Proc. Suppl. 56B, 76 (1997).
[6] E. Brezin, C. Itzykson, G. Parisi, and J. Zuber, Commun.

Math. Phys. 59, 35 (1978).
[7] K. N. Anagnostopoulos, M. Hanada, J. Nishimura, and S.

Takeuchi, Phys. Rev. Lett. 100, 021601 (2008).
[8] S. Catterall and T. Wiseman, Phys. Rev. D 78, 041502(R)

(2008).
[9] V. G. Filev and D. O’Connor, J. High Energy Phys. 05

(2016) 167.
[10] E. Berkowitz, E. Rinaldi, M. Hanada, G. Ishiki, S.

Shimasaki, and P. Vranas, Phys. Rev. D 94, 094501 (2016).

[11] T. Azuma, T. Morita, and S. Takeuchi, Phys. Rev. Lett. 113,
091603 (2014).

[12] G. Bergner, N. Bodendorfer, M. Hanada, E. Rinaldi, A.
Schfer, and P. Vranas, J. High Energy Phys. 01 (2020) 053.

[13] E. Bianchi and R. C. Myers, Classical Quantum Gravity 31,
214002 (2014).

[14] T. Faulkner, A. Lewkowycz, and J. Maldacena, J. High
Energy Phys. 11 (2013) 074.

[15] W. Donnelly and L. Freidel, J. High Energy Phys. 09 (2016)
102.

[16] D. Harlow, Commun. Math. Phys. 354, 865 (2017).
[17] X. Han and S. A. Hartnoll, Phys. Rev. X 10, 011069 (2020).
[18] H.W. Lin, J. High Energy Phys. 06 (2020) 090.
[19] P. D. Anderson and M. Kruczenski, Nucl. Phys. B921, 702

(2017).
[20] If hIi ¼ 1, hO†i ¼ hOi�, and hO†Oi ≥ 0 for all operators

O, then hOi ¼ tr ðρOÞ for some quantum state ρ. If,
furthermore, hOHi ¼ EhOi, then ρ must be an eigenstate
with energy E. Therefore asK → ∞, wherein the constraints
are indeed imposed for all operators, the allowed region of
energies necessarily shrinks to the spectrum of the
Hamiltonian, with hOi the expectation value in energy
eigenstates.

[21] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.125.041601 for details
of numerical implementation and of the Born-Oppenheimer
wavefunction, which includes Refs. [22–24].

[22] S. R. Das and A. Jevicki, Mod. Phys. Lett. A 05, 1639
(1990).

[23] O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas, M.
Van Raamsdonk, and T. Wiseman, J. High Energy Phys. 01
(2006) 140.

[24] J. Nocedal and S. Wright, Numerical Optimization
(Springer Science & Business Media, New York, 2006).

[25] J. Hoppe, Quantum theory of a massless relativistic surface
and a two-dimensional bound state problem, Ph.D. thesis,
Massachusetts Institute of Technology, 1982.

[26] T. Morita and H. Yoshida, Phys. Rev. D 101, 106010
(2020).

[27] D. E. Berenstein, M. Hanada, and S. A. Hartnoll, J. High
Energy Phys. 02 (2009) 010.

[28] W. Krauth, H. Nicolai, and M. Staudacher, Phys. Lett. B
431, 31 (1998).

[29] W. Krauth and M. Staudacher, Phys. Lett. B 435, 350
(1998).

[30] B. Simon, Ann. Phys. (N.Y.) 146, 209 (1983).

PHYSICAL REVIEW LETTERS 125, 041601 (2020)

041601-5

https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1103/PhysRevD.55.5112
https://doi.org/10.1103/PhysRevD.55.5112
https://doi.org/10.1088/1126-6708/2002/04/013
https://doi.org/10.1016/S0920-5632(97)00312-5
https://doi.org/10.1007/BF01614153
https://doi.org/10.1007/BF01614153
https://doi.org/10.1103/PhysRevLett.100.021601
https://doi.org/10.1103/PhysRevD.78.041502
https://doi.org/10.1103/PhysRevD.78.041502
https://doi.org/10.1007/JHEP05(2016)167
https://doi.org/10.1007/JHEP05(2016)167
https://doi.org/10.1103/PhysRevD.94.094501
https://doi.org/10.1103/PhysRevLett.113.091603
https://doi.org/10.1103/PhysRevLett.113.091603
https://doi.org/10.1007/JHEP01(2020)053
https://doi.org/10.1088/0264-9381/31/21/214002
https://doi.org/10.1088/0264-9381/31/21/214002
https://doi.org/10.1007/JHEP11(2013)074
https://doi.org/10.1007/JHEP11(2013)074
https://doi.org/10.1007/JHEP09(2016)102
https://doi.org/10.1007/JHEP09(2016)102
https://doi.org/10.1007/s00220-017-2904-z
https://doi.org/10.1103/PhysRevX.10.011069
https://doi.org/10.1007/JHEP06(2020)090
https://doi.org/10.1016/j.nuclphysb.2017.06.009
https://doi.org/10.1016/j.nuclphysb.2017.06.009
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.041601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.041601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.041601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.041601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.041601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.041601
http://link.aps.org/supplemental/10.1103/PhysRevLett.125.041601
https://doi.org/10.1142/S0217732390001888
https://doi.org/10.1142/S0217732390001888
https://doi.org/10.1088/1126-6708/2006/01/140
https://doi.org/10.1088/1126-6708/2006/01/140
https://doi.org/10.1103/PhysRevD.101.106010
https://doi.org/10.1103/PhysRevD.101.106010
https://doi.org/10.1088/1126-6708/2009/02/010
https://doi.org/10.1088/1126-6708/2009/02/010
https://doi.org/10.1016/S0370-2693(98)00557-7
https://doi.org/10.1016/S0370-2693(98)00557-7
https://doi.org/10.1016/S0370-2693(98)00814-4
https://doi.org/10.1016/S0370-2693(98)00814-4
https://doi.org/10.1016/0003-4916(83)90057-X

