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Using the quasilocal properties alone we show that the area spectrum of a black hole horizon must be
discrete, independent of any specific quantum theory of gravity. The area spectrum is found to be half-
integer spaced with values 8πγl2

pj where j ∈ N=2. We argue that if microstate counting is carried out for
quantum states residing on the horizon only, correction of expð−A=4l2

pÞ over the Bekenstein-Hawking
area law must arise in black hole entropy.
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According to our present understanding black hole
horizons are identical to thermodynamic systems. The
classical dynamics of black hole horizons encode thermal
behavior. Isolated black hole horizons in equilibrium
indeed have constant surface gravity (κ) and their classical
evolution from one equilibrium state to another changes the
parameters like mass (M), angular momentum (J ), etc. in
such a way that a relation identical to the first law of
thermodynamics is obeyed provided horizons are assigned
a temperature T ¼ ℏκ=2π and the horizon areaA is equated
to the thermodynamic entropy S ¼ ðA=4l2

pÞ where lp is
the Planck length. The law of ever increasing classical area
A enforces the analogy further [1–3].
The study of the microscopic origin of entropy is a major

thrust area of quantum black hole physics. It is generally
expected that any quantum theory of black hole must
furnish an explanation of the Bekenstein-Hawking area
law for entropy. Microstate counting in string theory as well
as loop quantum gravity (LQG) not only yields the
Bekenstein-Hawking area law but also produces correc-
tions to it (as an expansion of l2

P=A) including a loga-
rithmic term [4–12]. These corrections appear for horizons
having areas large compared to l2

p. It is now accepted that
black hole entropy should have the following form:

S¼ A
4l2

P
þ α ln

A
4l2

P
þ β

4l2
P

A
þ � � � þ exp

�
−δ

A
4l2

P

�
þ � � � ;

ð1Þ

where α, β, δ, etc. are universal constants. For small
horizons having areas Oðl2

pÞ (whose understanding
requires a full theory of quantum gravity) the log and
subsequent correction terms involving ðl2

P=AÞ and its

higher orders may be either absent or modified. Indeed,
it has been stressed in [13] that even for large areas
logarithmic corrections do not arise if the microstate
counting is made in a certain manner. Clearly even if these
terms are inescapable, they must be negligible in the small
area limit. However, the exponential term is interesting:
although negligible for large areas, it may become an
important correction if the area is small. The exponential
correction has not been studied in the literature at length
although some interesting computations in string theory
exhibit such terms [14]. In this Letter we shall derive black
hole entropy and the exponential correction using only the
horizon geometry and without appealing either to string
theory or LQG. In the process we shall identify local
horizon microstates and also derive an area spectrum. Our
results indicate that exponential corrections in black hole
entropy may arise in any quantum theory of gravity.
An important feature of our approach which will play a

crucial role in our derivation lies in the quantum repre-
sentation of black hole horizons. Note that quantum
descriptions of black holes in string theory or LQG make
use of the entire spacetime. The use of bulk is explicit in
LQG and implicit in string theory (the quantized brane
configurations are expected to reproduce the entire space-
time not the horizon only). In some sense these character-
izations require the horizon to be quantum mechanically
entangled with the bulk although classically it remains
isolated. Instead, we develop a picture of a horizon which
remains classically isolated and does not communicate with
the bulk even quantum mechanically. The picture is some-
what like an individual atom whose quantum theory does
not force it to interact with the rest of the universe and its
quantum states are not necessarily entangled with its
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surroundings. This leads to a truly isolated quantum black
hole subjected to microstate counting.
In four-dimensional spacetime M a black hole horizon

in equilibrium (Δ) is best described by a weak isolated
horizon (WIH) [15–17].Δ is a null hypersurface inM such
that its generator la (belonging to an equivalence class
½ξla�, ξ being a function on the horizon) is a null vector
field which is shear-free, expansion-free, and Killing on the
horizon. The acceleration of la obtained from la∇alb ¼
κðlÞlb is called the surface gravity κðlÞ. Since Δ is defined
without reference to asymptotic infinity, κðlÞ is local. By
appropriate choices of the function ξ the horizon Δ admits
all possible values of surface gravity including zero for
extremal horizons. We assume that Δ is topologically
S2 ×R. The null vectors ðla; na; ma; m̄aÞ will be used
as the spacetime basis (the nonzero dot products being
l · n ¼ −1; m · m̄ ¼ 1). In this basis the spacetime metric is
given by gab ¼ −2lðanbÞ þ 2mðam̄bÞ.
Since we are interested in internal Lorentz symmetries,

the theory of gravity must be written in the first order tetrad-
connection variables. The metric variables cannot disen-
tangle diffeomorphisms from Lorentz transformations.
The tetrad variable eIa maps the spacetime vector fields
to internal flat Minkowski space vectors lI ¼ eIala

(a; b;… are spacetime indices while I; J;… are for internal
flat spacetime). The connection one-form ðAaIJÞ is defined
by∇aλI ¼ ∂aλI þ AaIJλ

J where λI is an internal vector and∂a is the internal flat connection. The horizonΔwill also be
assumed to have a fixed set of internal tetrad basis
ðlI; nI; mI; m̄IÞ annihilated by the internal flat connection.
In the bulk the spacetime M allows all possible Lorentz
transformations (ΛI

J) of the tetrads e
I
a. However, on Δ two

criteria must be satisfied: first the vector field la ¼ eaIl
I

should belong to the equivalence class ½ξla� and second
only those SLð2; CÞ transformations are allowed which
preserve the boundary conditions on Δ. These transforma-
tions constitute the “symmetries” of the Δ since they either
preserve the Newman-Penrose coefficients on the horizon
or transform them homogeneously. The generators of these
symmetries are [18]

BIJ ¼ −2l½InJ�; PIJ ¼ 2m½IlJ� þ 2m̄½IlJ�;

RIJ ¼ 2im½Im̄J�; QIJ ¼ 2im½IlJ� − 2im̄½IlJ�; ð2Þ
where R generates Euclidean rotations in the (m − m̄)
plane, P generates rotation in ðl-mÞ plane, Q generates
rotation in ðl-m̄Þ plane, and B generates scaling trans-
formations of l and n. These generators obey the Lie
algebra of ISOð2Þ ⋉ R where the symbol ⋉ stands for the
semidirect product. R, P, and Q generate ISO(2) on S2

while B generates R

½R;B� ¼ 0; ½R;P� ¼ Q; ½R;Q� ¼ −P;

½B;P� ¼ P; ½B;Q� ¼ Q; ½P;Q� ¼ 0; ð3Þ

where ½R;B�IJ ¼ RI
KBKJ − BI

KRKJ. This is not surprising
since ISO(2) is the little group of the Lorentz group that
keeps the horizon generator invariant.
We consider a spacetime region bounded by Δ, two

Cauchy surfaces M� respectively denoting the future and
past boundaries and the asymptotic boundary. We assume
suitable falloff conditions on the fields at asymptotic
boundary for a well defined action principle. In this region
of spacetime the transformations generated by ISOð2Þ ⋉ R
map fields to their equivalent configurations and hence are
pure gauges. However, at the boundaryΔ, these symmetries
may acquire the status of a global transformation and give
rise to physical charges. It is well known that in the
presence of boundaries local symmetries may lead to
observable charges and examples like edge states of gauge
theories arise in this way. Another familiar example is
Chern-Simons theory on a three-manifold with boundary,
say a disc D ×R, with R playing the role of time. In this
case gauge transformations take field configurations in the
bulk to their gauge equivalent ones but on the boundary
become global symmetries [19]. In gravity too the gauge
motions due to diffeomorphisms relate gauge equivalent
geometries in the bulk but they become genuine sym-
metries on the boundary giving rise to observable charges
[20]. Similarly for the Lorentz transformation belonging to
ISOð2Þ ⋉ R, the Hamiltonian generator or the phase space
charge is expected to become a physical charge on the
horizon.
To determine the Hamiltonian charges for internal

Lorentz symmetries we use the Holst action in (eIa, AaIJ)
variables. It is classically equivalent to the Einstein-Hilbert
action in second order metric variables. The Holst action is
given by the following Lagrangian (the factor 16πGγ is a
constant) [21,22]:

−16πGγL ¼ γΣIJ ∧ FIJ − eI ∧ eJ ∧ FIJ; ð4Þ

where ΣIJ ¼ ð1=2ÞεIJKLeK ∧ eL, AIJ is a Lorentz SO(3,1)
connection and FIJ is a curvature two-form corresponding
to the connection given by FIJ ¼ dAIJ þ AIK ∧ AK

J.
It is useful to add the boundary terms ½dðeI ∧ eJ ∧ AIJÞ −
γdðΣIJ ∧ AIJÞ� to the Lagrangian to make calculations
simpler [22]. The covariant phase space for this
Lagrangian contains all the solutions of Eq. (4) which
allow Δ as the inner boundary. Well-known black hole
solutions including the Schwarzschild and Kerr belong to
this space of solutions. The symplectic structure on this
space of solution has contributions from the spacetime bulk
and the boundary:

ð16πGγÞΩðδ1; δ2Þ ¼
Z
M
δ½1ðeI ∧ eJÞ ∧ δ2�A

ðHÞ
IJ

þ
Z
SΔ

δ½1 2ϵ δ2�fμðmÞ þ γψ ðlÞg; ð5Þ
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whereM is a partial Cauchy slice that intersects the horizon
Δ at the sphere SΔ and δ1, δ2 are vector fields on the phase
space. The quantity AðHÞ

IJ ¼ ð1=2Þ½AIJ − ð1=2ÞϵIJKLAKL�
and ψ ðlÞ and μðmÞ are phase space functions [22]. The
quantity 2ϵ is the area two-form on the spherical cross
sections SΔ of the horizon. The fields ψ ðlÞ and μðmÞ are
assumed to satisfy the boundary condition that ψ ðlÞ ¼ 0
and μðmÞ ¼ 0 at some initial cross section of the horizon.
We shall also use the result [23] that for a certain class of
spacetimes (Bardeen-Horowitz class) which are solutions
of Einstein’s equations with possibly nonzero cosmological
constant may be foliated by expansion-free, twist-free null
surfaces generated by null-vector field la. These surfaces
are transverse to a fiducial extremal null horizon placed at
v ¼ −∞ in the advanced Eddington-Finkelstein coordi-
nates. The Cauchy surface M cuts through these foliation
surfaces. Using this result we obtain the tetrad products in
the full spacetime

eIa ∧ eJb ¼ −2na ∧ mbl½Im̄J� − 2na ∧ m̄bl½ImJ�

þ 2i m½Im̄J� 2ϵab
ΣIJ
ab ¼ 2l½InJ� 2ϵab þ 2na ∧ ðimbl½Im̄J� − im̄bl½ImJ�Þ

: ð6Þ

The connection one-form is given in the basis of the algebra
of ISOð2Þ ⋉ R and has the following form [22]:

AIJ ¼ −2ωðlÞl½InJ� þ 2Uðl;mÞl½Im̄J� þ 2Ūðl;mÞl½ImJ�

þ 2VðmÞm½Im̄J�: ð7Þ

To evaluate the symplectic structure, note that the variations
of the tetrads and the connection due to infinitesimal
Lorentz transformations ΛI

J ¼ ðδIJ þ ϵIJÞ are given by

δϵeI ¼ ϵIJe
J; δεAIJ ¼ dεIJ þ AI

KεKJ þ AJ
KεIK: ð8Þ

Using (8) in the γ-independent (the Palatini) part of
symplectic structure of (5) leads to

ΩBðδϵ; δÞ ¼ −
1

8πG

Z
M
ðϵKIΣJK ∧ δAIJ − δΣIJ ∧ AIKεK

JÞ

− δΣIJ ∧ dϵIJ; ð9Þ

where the subscript B denotes the bulk part of the
symplectic structure and the boundary part vanishes. The
second term in (9) may be rewritten as δΣIJ ∧ dϵIJ ¼
dðδΣIJε

IJÞ þ δðAI
K ∧ ΣKJ þ AJ

K ∧ ΣIKÞεIJ. Using these
expressions in the symplectic structure (9), we note that the
terms with δΣIJ cancel each other while those with δAIJ
cancel for the Lorentz transformations which belong to the
symmetry group on a WIH. After some algebra we obtain
the following quantity on the cross sections (SΔ) of the
horizon:

ΩBðδϵ; δÞ ¼
1

16πG

Z
SΔ

δΣIJϵ
IJ: ð10Þ

Similarly, for the γ-dependent symplectic structure also a
similar expression may be obtained. The bulk contribu-
tion of the full Holst action to the symplectic structure
reduces to

ΩBðδϵ; δÞ ¼ −
1

16πGγ

Z
SΔ

δðeI ∧ eJ − γΣIJÞ ∧ ϵIJ: ð11Þ

For ϵIJ ¼ RIJ ¼ 2im½Im̄J� the symplectic structure in (11)
gives the Hamiltonian generating internal rotation in the
phase space. Since there is only one rotation on the horizon,
we shall denote it by −J and the only contribution comes
from the γ-dependent part of the symplectic structure:

ΩBðδR;δÞ¼−
1

8πGγ

Z
SΔ

δ2ϵ¼−δ
�

A
8πGγ

�
≡δð−JÞ: ð12Þ

So ðA=8πGγÞ is the generator of rotation in the phase space
of isolated horizons. For ϵIJ ¼ BIJ ¼ −2l½InJ� we denote
the charge by K as it is a boost on the horizon and the only
contribution comes from the γ-independent part of the
symplectic structure (11):

ΩBðδB; δÞ ¼
1

8πG

Z
SΔ

δ 2ϵ ¼ δ

�
A
8πG

�
≡ δðKÞ: ð13Þ

Thus, ðA=8πGÞ is the generator of boosts in the phase
space of isolated horizons, generalizing [24–27]. Similarly,
one can show that the Hamiltonian charges of the remain-
ing two generators PIJ and QIJ vanish on the horizon. It
also follows from this symplectic structure that the algebra
of the Hamiltonian charges is identical to algebra of the
spacetime vector fields. Thus, we have derived two results
of immense importance: First, the relation K ¼ γJ which
has important implications in quantum gravity and is
usually referred to as the “linear simplicity constraint”
[28]. Second, the horizon area is linked with the internal
angular momentum through the relationA ¼ 8πGγJ. In the
following, we show that the quantum states residing on the
horizon belong to a finite dimensional representation of
the Lie algebra of ISO(2). These states are also the
eigenstates of J and are labeled by integers or half-integers
and consequently theA-J relation implies that the spectrum
of A is naturally discrete.
Let us now identify the quantum states on the horizon

cross section. We note that the algebra of vector fields is
faithfully mapped to algebra of charges on the horizon. If
the generators corresponding to PIJ andQIJ are denoted by
Q and P respectively [to make the algebra similar to the
algebra (3)] the quantum algebra is

½J; P� ¼ iℏQ; ½J;Q� ¼ −iℏP; ½P;Q� ¼ 0: ð14Þ
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The operator P2 ≡ P2 þQ2 commutes with the algebra. If
the eigenvalues of P2 and J are p2 and j respectively then
the states are labeled by jp2; ji. Linear combinations of P,
Q form the shift operators: P� ¼ P� iQ. A simple algebra
shows that P� are the raising and lowering operators
respectively. More precisely P�jp2; ji ¼ ℏjp2; j� 1i. In
case of WIH the generators corresponding to PIJ and QIJ
must vanish and hence for solutions belonging to the WIH
phase space both Pþ and P− vanish. In other words the
label j of the states is not raised or lowered and the
operators P� act as constraints on the physical states
P�jp2; ji ¼ 0. So the physical states of the horizon must
have p2 ¼ 0 and be labeled by j alone. This is consistent
with the homogeneous action of rotation operator on P and
Q since the rotated vector operators will vanish on physical
states. Hence, the irreducible representations for this case
are one-dimensional and states are labeled by integer or
half-integer j [29]. Note that these states are independent of
quantum states residing in the bulk.
The analysis shows that on a WIH phase space the

eigenstates of J may be used to determine the spectrum of
the area operator Ajji ¼ 8πGγJjji ¼ 8πGℏγjjji. The area
eigenvalues, also denoted by A, are then 8πGγℏj. This is
similar to the result of [30]. In the present scenario the
quantization arises naturally from to geometry of the WIH.
Note that on aWIH the operators P� do not change j. Since
j gives the total area, this implies that the operators and
states defined here naturally incorporate the fact that the
area of WIH should not change.
For the microstate counting we first note that large area

A corresponds to large j. Since a large j representation can
be built from a large number of smaller j representations,
we assume that a large area is a sum of smaller areas. This
gives the microscopic germs of the surface SΔ as a large
number of tiles much like the tessellation on the surface of a
soccer ball. We further assume that the j labels of the tiles
are independent of each other, that is, no further constraint
is imposed on their sum. Although the tessellation is
motivated by the representation theory, for now we do
not have a good argument to support the assumption of
independence of j’s used to label the tiles. These assump-
tions are, however, testable if we quantize the WIH in a full
quantum theory of gravity. Often a quantum theory also
involves further assumptions and for now our assumptions
may be regarded as simplest. Since a quantum state of the
full classical area SΔ is labeled by an integer or half-integer
jji, this implies that the area of each tile should also be
labeled by integers or half-integers. The macrostate jji is
given by a tensor product jji ¼⊗i jjii where i labels
the tiles. The eigenvalue of the area operator is given by
A ¼⊕i Ai where each tile with label ji contributes an area
Ai ¼ 8πγl2

pji. Thus, j ¼
P

i ji. This equation is the basis
for calculating the black hole entropy which is obtained by
determining the number of independent ways the configu-
rations fjig can be chosen such that for a fixed j the

condition j ¼ P
i ji is satisfied. The choice of independent

tiling is however subject to diffeomorphism constraints.
Using arguments similar to LQG [30] we may fix the
diffeomorphism constraints by coloring the tiles. However,
this process of fixing the diffeomorphism gauge makes the
tiles distinguishable. Suppose in the partition of j ¼ N=2
the number ni ¼ 2ji is shared by si tiles. Then theP

i sini ¼ N and
P

i si is the total number of tiles in the
tessellation. So the total number of independent configu-
rations is given by

Ω ¼ ðPisiÞ!Q
isi!

: ð15Þ

Varying logΩ subject to the constraint δ
P

i sini ¼ 0 yields
the most likely configuration si ¼ ðPi siÞ expð−λniÞ
where the variation parameter λ is to be determined from
the constraint

P
i expð−λniÞ ¼ 1 where ni ¼ 1;…; N. This

gives λ ¼ ln 2 − 2−N þ oð2−2NÞ for large N and entropy
S ¼ λN. Substituting N we get

S ¼ A ln 2
8πγl2

p
þ e−A ln 2=8πγl2p : ð16Þ

Thus, for the choice γ ¼ lnð2Þ=2π, the leading order
Bekenstein-Hawking result is reproduced, but also an
exponentially suppressed correction to the classical result
is obtained. This is an unexpected result since the present it
from bit formulation of the horizon gives logarithmic
corrections. The exponential suppression has been shown
to arise in some nonperturbative string computations [14]
but has not been found in LQG calculations. Note that the
entropy calculation uses a large value for si. However,
keeping in mind that Stirling’s approximation holds well
even for small numbers (for n ¼ 2 Stirling’s approximation
gives 1.91 and the difference is an order of magnitude
smaller than ln 2) this correction is expected to survive for
small areas Oðl2

pÞ as well and fail only in the sub-
Planckian regime.
In summary, we have reported two major results in this

Letter. First, the classical boundary conditions of a WIH
and symplectic structure of Einstein’s theory together imply
that the classical area of horizon is the Hamiltonian charge
or generator of internal rotation. The relation J ¼ A=8πGγ
is reminiscent of the well-known area quantization in LQG
where the classical horizon area is quantized by represen-
tations of the internal angular momentum operator

ffiffiffiffiffi
J2

p
.

However, we show that such a relation arises directly at the
level of classical phase space of WIH. It is a new and
unexpected result. It connects Einstein’s theory of gravity,
its internal rotational symmetries, and classical black hole
horizons in an intriguing way and relates the classical area
of a WIH to representation of the internal angular momen-
tum operator and thus shows how quantization of the area
occurs. Although the area spectrum is in variance with the
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LQG literature [30] it agrees with one of the regularized
versions proposed in [31] and also with [32] from quasi-
normal modes. Second, by choosing an appropriate repre-
sentation the quantum states of a WIH and counting the
most natural microstates of this representation correspond-
ing to a given classical area correctly reproduces the
semiclassical result of entropy and predicts a new form
of quantum correction. These corrections do not involve
any logarithmic term as in other counting schemes but fall
off exponentially from the semiclassical value. This is also
a new result and is expected to hold up to the Planckian
regime of area Oðl2

pÞ. To probe into the sub-Planckian
regime one has to do an exact counting of microstates
without employing Stirling’s approximation. We reiterate
that so far symmetry has been our sole guiding principle
and the tessellated description is only a plausible model of
microstates on the horizon. In a full theory of quantum
gravity these notions can be tested but one needs to make
further assumptions about the quantum theory itself such as
the Hilbert space, operators, etc. and also about the classical
limit in which the WIH phase space emerges. The black
hole horizon used in LQG is very similar in spirit to this
model but there are differences in details such as the bulk-
boundary constraint which plays a major role in quantizing
a WIH. Our microscopic model should be viewed as the
simplest one which relies on the geometric properties of the
horizon alone and accounts for the black hole entropy. In
the future, we wish to carry out a detailed investigation of
the phase space and Hamiltonian charges in a quantum
theory of gravity.

The authors are also supported by the Department of
Atomic Energy, BRNS project Grant No. 58/14/25/2019-
BRNS. A. C. is also supported by SERB-DST through their
MATRICS project Grant No. MTR/2019/000916. A. C.
also thanks IUCAA for a visit through its Visiting
Associate Programme.

*ayan.theory@gmail.com
†amit.ghosh@saha.ac.in

[1] J. M. Bardeen, B. Carter, and S. W. Hawking, Commun.
Math. Phys. 31, 161 (1973).

[2] S. W. Hawking, Commun. Math. Phys. 43, 199 (1975); 46,
206(E) (1976).

[3] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973).

[4] A. Strominger and C. Vafa, Phys. Lett. B 379, 99 (1996).
[5] R. Dijkgraaf, E. P. Verlinde, and H. L. Verlinde, Nucl. Phys.

B484, 543 (1997).
[6] A. Dabholkar, J. Gomes, and S. Murthy, J. High Energy

Phys. 05 (2011) 059.
[7] I. Mandal and A. Sen, Classical Quantum Gravity 27,

214003 (2010).
[8] A. Ashtekar, J. Baez, A. Corichi, and K. Krasnov, Phys.

Rev. Lett. 80, 904 (1998).
[9] R. K. Kaul and P. Majumdar, Phys. Rev. Lett. 84, 5255

(2000).
[10] K. A. Meissner, Classical Quantum Gravity 21, 5245

(2004).
[11] M. Domagala and J. Lewandowski, Classical Quantum

Gravity 21, 5233 (2004).
[12] A. Ghosh and P. Mitra, Phys. Lett. B 616, 114 (2005).
[13] A. Ghosh and P. Mitra, Phys. Lett. B 734, 49 (2014).
[14] A. Dabholkar, J. Gomes, and S. Murthy, J. High Energy

Phys. 03 (2015) 074.
[15] A. Ashtekar, C. Beetle, O. Dreyer, S. Fairhurst, B. Krishnan,

J. Lewandowski, and J. Wisniewski, Phys. Rev. Lett. 85,
3564 (2000).

[16] A. Ashtekar and B. Krishnan, Living Rev. Relativity 7, 10
(2004).

[17] A. Perez, Rep. Prog. Phys. 80, 126901 (2017).
[18] R. Basu, A. Chatterjee, and A. Ghosh, Classical Quantum

Gravity 29, 235010 (2012).
[19] E. Witten, Commun. Math. Phys. 121, 351 (1989).
[20] L. Szabados, Living Rev. Relativity 12, 4 (2009).
[21] S. Holst, Phys. Rev. D 53, 5966 (1996).
[22] A. Chatterjee and A. Ghosh, Phys. Rev. D 80, 064036

(2009).
[23] J. Lewandowski and A. Szereszewski, Phys. Rev. D 100,

024049 (2019).
[24] S. Carlip and C. Teitelboim, Classical Quantum Gravity 12,

1699 (1995).
[25] S. Massar and R. Parentani, Nucl. Phys. B575, 333 (2000).
[26] A. C. Wall, Phys. Rev. D 82, 124019 (2010).
[27] A. Chatterjee and A. Ghosh, Eur. Phys. J. C 78, 550 (2018).
[28] C. Rovelli and F. Vidotto, Phys. Rev. Lett. 111, 091303

(2013).
[29] S. Weinberg, Quantum Theory of Fields (Cambridge

University Press, Cambridge, England, 1995).
[30] A. Ashtekar and J. Lewandowski, Classical Quantum

Gravity 21, R53 (2004).
[31] A. Alekseev, A. P. Polychronakos, and M. Smedback, Phys.

Lett. B 574, 296 (2003).
[32] O. Dreyer, Phys. Rev. Lett. 90, 081301 (2003).

PHYSICAL REVIEW LETTERS 125, 041302 (2020)

041302-5

https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF01645742
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF01608497
https://doi.org/10.1007/BF01608497
https://doi.org/10.1103/PhysRevD.7.2333
https://doi.org/10.1016/0370-2693(96)00345-0
https://doi.org/10.1016/S0550-3213(96)00640-2
https://doi.org/10.1016/S0550-3213(96)00640-2
https://doi.org/10.1007/JHEP05(2011)059
https://doi.org/10.1007/JHEP05(2011)059
https://doi.org/10.1088/0264-9381/27/21/214003
https://doi.org/10.1088/0264-9381/27/21/214003
https://doi.org/10.1103/PhysRevLett.80.904
https://doi.org/10.1103/PhysRevLett.80.904
https://doi.org/10.1103/PhysRevLett.84.5255
https://doi.org/10.1103/PhysRevLett.84.5255
https://doi.org/10.1088/0264-9381/21/22/015
https://doi.org/10.1088/0264-9381/21/22/015
https://doi.org/10.1088/0264-9381/21/22/014
https://doi.org/10.1088/0264-9381/21/22/014
https://doi.org/10.1016/j.physletb.2005.05.003
https://doi.org/10.1016/j.physletb.2014.05.030
https://doi.org/10.1007/JHEP03(2015)074
https://doi.org/10.1007/JHEP03(2015)074
https://doi.org/10.1103/PhysRevLett.85.3564
https://doi.org/10.1103/PhysRevLett.85.3564
https://doi.org/10.12942/lrr-2004-10
https://doi.org/10.12942/lrr-2004-10
https://doi.org/10.1088/1361-6633/aa7e14
https://doi.org/10.1088/0264-9381/29/23/235010
https://doi.org/10.1088/0264-9381/29/23/235010
https://doi.org/10.1007/BF01217730
https://doi.org/10.12942/lrr-2009-4
https://doi.org/10.1103/PhysRevD.53.5966
https://doi.org/10.1103/PhysRevD.80.064036
https://doi.org/10.1103/PhysRevD.80.064036
https://doi.org/10.1103/PhysRevD.100.024049
https://doi.org/10.1103/PhysRevD.100.024049
https://doi.org/10.1088/0264-9381/12/7/011
https://doi.org/10.1088/0264-9381/12/7/011
https://doi.org/10.1016/S0550-3213(00)00067-5
https://doi.org/10.1103/PhysRevD.82.124019
https://doi.org/10.1140/epjc/s10052-018-6021-8
https://doi.org/10.1103/PhysRevLett.111.091303
https://doi.org/10.1103/PhysRevLett.111.091303
https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1016/j.physletb.2003.08.062
https://doi.org/10.1016/j.physletb.2003.08.062
https://doi.org/10.1103/PhysRevLett.90.081301

